做数学大题的技巧
考数学时,有人考完以后说某个大题能得满分,结果却并非如此。一个大题12分,结果呢他这儿扣点儿那儿扣点儿,只能得个八九分。学生还觉得挺委屈的,这个题明明会做,怎么被扣分了呢?其实是过程出问题了,数学解题的步骤是有分数的,而且这个分数还有比较明确的界定。学生在考试的时候,一定注意这些学科评分的得分点。比如让你求出一个椭圆的方程,你可能不会求,但你只要写上“解:设所求椭圆的方程为x2/a2+y2/b2=1”,就很可能得1分,这1分是不需要任何付出的。你要解数学应用题的时候,你做完了,你得写上“答:以上结果是什么”,要是没有这句话就被扣分了。高考依然到了的冲刺阶段,考生们依然坚持着最为紧张的复习。如何在众多知识点中把握住关键点,并掌握哪些技巧呢?那么接下来给大家分享一些关于做数学大题的技巧做数学大题的技巧,希望对大家有所帮助。
高考构造函数求解真题 高考构造函数求解真题
高考构造函数求解真题 高考构造函数求解真题
举个例子
做数学大题的技巧
一、三角函数题
注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。
二、数列题
1、证明一个数列是等(等比)数列时,下结论时要写上以谁为首项,谁为公(公比)的等(等比)数列;
2、一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的设,否则不正确。利用上设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的 方法 是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;
三、立体几何题
1、证明线面位置关系,一般不需要去建系,更简单;
2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;
3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。
四、概率问题
1、搞清随机试验包含的所有基本和所求包含的基本的个数;
2、搞清是什么概率模型,套用哪个公式;
3、记准均值、方、标准公式;
4、求概率时,正难则反(根据p1+p2+...+pn=1);
5、注意计数时利用列举、树图等基本方法;
6、注意放回抽样,不放回抽样;
7、注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;
8、注意条件概率公式;
9、注意平均分组、不完全平均分组问题。
五、圆锥曲线问题
1、注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;
2、注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;
3、战术上整体思路要保7分,争9分,想12分。
六、导数、极值、最值、不等式恒成立(或逆用求参)问题
1、先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号);
2、注意一问有应用前面结论的意识;
3、注意分论讨论的思想;
4、不等式问题有构造函数的意识;
5、恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法);
6、整体思路上保6分,争10分,想14分。
数学必考5类题型解题技巧
一、排列组合篇
1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。
2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。
3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。
4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。
5.了解随机的发生存在着规律性和随机概率的意义。
6.了解等可能性的概率的意义,会用排列组合的基本公式计算一些等可能性的概率。
7.了解互斥、相互的意义,会用互斥的概率加法公式与相互的概率乘法公式计算一些的概率。
8.会计算在n次重复试验中恰好发生k次的概率.
二、立体几何篇
高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。
知识整合
1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高 逻辑思维 能力和空间想象能力。
2.判定两个平面平行的方法:
(1)根据定义--证明两平面没有公共点;
(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;
(3)证明两平面同垂直于一条直线。
3.两个平面平行的主要性质:
(1)由定义知:“两平行平面没有公共点”。
(2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。
(3)两个平面平行的性质定理:”如果两个平行平面同时和第三个平 面相 交,那么它们的交线平行“。
(4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。
(5)夹在两个平行平面间的平行线段相等。
(6)经过平面外一点只有一个平面和已知平面平行。
以上性质(2)、(3)、(5)、(6)在课文中虽未直接列为”性质定理“,但在解题过程中均可直接作为性质定理引用。
解答题分步骤解答可多得分
1.合理安排,保持清醒。数学考试在下午,建议中午休息半小时左右,睡不着闭闭眼睛也好,尽量放松。然后带齐用具,提前半小时到考场。
2.通览全卷,摸透题情。刚拿到试卷,一般较紧张,不宜匆忙作答,应从头到尾通览全卷,尽量从卷面上获取更多的信息,摸透题情。这样能提醒自己先易后难,也可防止漏做题。
3.解答题规范有序。一般来说,试题中容易题和中档题占全卷的80%以上,是考生得分的主要来源。对于解答题中的容易题和中档题,要注意解题的规范化,关键步骤不能丢,如三种语言(文字语言、符号语言、图形语言)的表达要规范,逻辑推理要严谨,计算过程要完整,注意算理算法,应用题建模与还原过程要清晰,合理安排卷面结构……对于解答题中的难题,得满分很困难,可以采用“分段得分”的策略,因为高考(微博)阅卷是“分段评分”。比如可将难题划分为一个个子问题或一系列的步骤,先解决问题的一部分,能解决到什么程度就解决到什么程度,获取一定的分数。有些题目有好几问,前面的小问你解答不出,但后面的小问如果根据前面的结论你能够解答出来,这时候不妨引用前面的结论先解答后面的,这样跳步解答也可以得分。
三、数列问题篇
数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等数列、等比数列,求极限和数学归纳法综合在一起。探索性问题是高考的 热点 ,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。
近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等数列与等比数列的概念、性质、通项公式及求和公式。(2)数列与 其它 知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。(3)数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为一题难度较大。
知识整合
1. 在掌握等数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;
2. 在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。
3. 培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法.
四、导数应用篇
专题综述
导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的学习,主要是以下几个方面:
1.导数的常规问题:
(1)刻画函数(比初等方法细微);
(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);
(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。
2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。
3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考(微博)中考察综合能力的一个方向,应引起注意。
知识整合
1.导数概念的理解。
2.利用导数判别可导函数的极值的方法及求一些实际问题的值与最小值。复合函数的求导法则是微积分中的重点与难点内容。课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。
3.要能正确求导,必须做到以下两点:
(1)熟练掌握各基本初等函数的求导公式以及和、、积、商的求导法则,复合函数的求导法则。
(2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。
五、解析几何(圆锥曲线)
高考解析几何剖析:
1、很多高考问题都是以平面上的点、直线、曲线(如圆、椭圆、抛物线、双曲线)这三大类几何元素为基础构成的图形的问题;
2、演绎规则就是代数的演绎规则,或者说就是列方程、解方程的规则。
有了以上两点认识,我们可以毫不犹豫地下这么一个结论,那就是解决高考解析几何问题无外乎做两项工作:
(1)几何问题代数化。
(2)用代数规则对代数化后的问题进行处理。
高考数学大题答题思路
1、函数与方程思想
函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程或不等式模型去解决问题。同学们在解题时可利用转化思想进行函数与方程间的相互转化。
2、 数形结合思想
中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此建议同学们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。
3、特殊与一般的思想
用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用
4、极限思想解题步骤
极限思想解决问题的一般步骤为:一、对于所求的未知量,先设法构思一个与它有关的变量;二、确认这变量通过无限过程的结果就是所求的未知量;三、构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果
5、分类讨论思想
同学们在解题时常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。引起分类讨论的原因很多,数学概念本身具有多种情形,数算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。建议同学们在分类讨论解题时,要做到标准统一,不重不漏。
★ 做数学选择题的十种技巧
★ 做数学应用题的技巧
★ 做数学蒙题的技巧
★ 做数学压轴题的技巧初中
★ 高考数学大题答题技巧方法
★ 高考数学大题的解题技巧
★ 做数学题有何技巧方法
★ 做数学压轴题的技巧高中
★ 高考数学大题得分技巧
数学高考六道大题的题型
(2)求区间(a,b)的中点x1;数学高考六道大题题型为:三角函数,概率,立体几何,函数,数列,解析几何。三角函数,概率,立体几何相对较容易。函数,数列,解析几何类经常做压轴题,相对较难。
一、三角函数题
注意归一公式、诱导公式的正确性。转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变,符号看象限)时,很容易因为粗心,导致错误。
二、数列题
1、证明一个数列是等数列时,下结论时要写上以谁为首项,谁为公的等数列。
2、证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。
三、立体几何题
求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系。
四、圆锥曲线问题
注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系。系数法。
2017年江苏高考数学试题难易度调查 江苏高考数学难吗
所以你求出了f(t),我是应届毕业生,我自己分析一下
3、证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。填空1~12部分题有一些计算量,但不是很大。我做的时候不到20分钟就做完了,反正前十二题也不是什么难题。13题是个有关坐标系的题,设点,构造不等式,然后线性规划,这是我的做法,这题难度还是有的。填空第14题就比较难了。(我有个同学把这题拿给北大数学系保研生做,结果不会。可能他也没认真看,不过这题确实有难度,我问了很多同学,大家都不会)我的方法是瞎猜,画个图数形结合,然后我就猜猜猜。。 然后到了大题 15立体几何 16三角 17解析几何椭圆 这三个都是打酱油的 17题可能有一些计算量,但这整体不太难。 但噩梦就来了。18题简直教我做人,它向我诠释了什么是恶心,什么是绝望,什么才是真正的数学。计算量比较大,而且比较绕(这题有一个小争议,对于“没”字。不过第二问都一样,我想其实不大会有人想多) 在棱台的立体图形中解三角形。先找到要解的三角,通过各种关系求出一个角的正余弦值,然后设边解三角,算算算,三角相似,得出结论。我绕了很久,猜出了一个很复杂的方程,才得解。
19.20两题我已经不想说了。(作为一个普通学生和战五渣,我只想说,你连问都不给,一分都不给,一分都不给,一分都不给)但我不能不写点啥啊。 19题数列,难度大,不好想。设等数列通项,化啊化啊就出来了,但我只能胡乱写知道啥写啥吧。 第20题函数,问有些麻烦,但毕竟是问,细心读题认真思考还是能做的(我已经到了开始讨论问这种“简单”题的地步了) 第二问构造函数。第三问不知道。 到了二卷附加,前2题都是送分题,第三题是空间向量,合理建系,仔细计算,有点计算量,主要是做到那时我的脑袋已经不好使了(前一天失眠,导致我就睡了四小时 第二天还考了语文和数学。。哈哈哈哈哈哈) 一题是概率问还行,然后就没有时间了。。不过反正有时间我也做不出,好像还比较难。 整体来讲今年卷子有些难度,比去年难是一定的,2016是江苏最简单一年,不可能比16再简单了。还是挺难的 特别是几个把关题14.18.19.20.23 但要认真学,仔细做,一卷110以上还是可以的(也得搞个120吧。16年省均分90多,今年肯定底)PS:纯属个人意见,如有冒犯之处,多多包涵,我只是一个战五渣
高考数学技巧
3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。高考数学技巧如下:
二、数列题:一、三角函数题:注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。
1、证明一个数列是等(等比)数列时,下结论时要写上以谁为首项,谁为公(公比)的等(等比)数列。
2、一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的设,否则不正确。
利用上设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证。
3、证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。
三、立体几何题:
1、证明线面位置关系,一般不需要去建系,更简单。
3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。
四、概率问题:
1、搞清随机试验包含的所有基本和所求包含的基本的个数。
2、搞清是什么概率模型,套用哪个公式。
3、记准均值、方、标准公式。
5、注意计数时利用列举、树图等基本方法。
6、注意放回抽样,不放回抽样。
7、注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透。
8、注意条件概率公式。
9、注意平均分组、不完全平均分组问题。
2012山东理科数学高考12题求解!
9:检查试卷令F'(x)=0,这是错的,我不知道你有没有看错,还是原来就是错解,因为分式的倒数的导数要=0,是无意义的,此时的x趋近无穷大。其实我想问你的是:是f(x)=1/x还是F(x)=1/x?
F(x)是不是构造函数?如果是,你就要把表达式写出来,不然别人看不懂,我也一样。这样我才能知道为什么要令F(-2b/3a)=0。
F'(x)=3.战术上整体思路要保7分,争9分,想12分。0求的不是极值,是改点(x)的斜率(导数)。但从这里我能确定F(x)应该是f(x)与g(x)两的构造函数了。
2022高考数学选择题规律 有哪些答题技巧
将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何、立体几何上面,很多计算步骤繁琐、计算量大的题,采用极端性去分析,就能瞬间解决问题。
高考数学选择题规律有哪些
数形结合法:就是把高考数学问题中的数量关系和空间图形结合起来思考问题。数与型相互转化,使问题化繁为简,得以解决。
特殊值法:有些高考数学问题从理论上论证它的正确性比较困难,但是代入一些满足题意的特殊值,验证它是错误的比较容易,此时,我们就可以用这种方法来解决问题。
划归转化法:运用某种方法把生疏问题转化为熟悉问题,把复杂问题转化为简单问题,使问题得以解决。
方程法:通过设未知数,找等量关系,建方程,解方程,使高考数学问题得以解决的方法。
实践作法:近几年出现了一些纸片折叠剪裁的高考数学题目,我们在考试中实际动手作一下,就会很容易得出。
设法:有些高考数学题目情况繁多,无从下手,这时候我们就可以先设一种情况,然后从这个设出发,排除不可能的情况,得出正确结论。
高考数学答题技巧
一、三角函数题
注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。
二、数列题
1.证明一个数列是等(等比)数列时,下结论时要写上以谁为首项,谁为公(公比)的等(等比)数列;
2.一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的设,否则不正确。利用上设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;
3.证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。
三、立体几何题
1.证明线面位置关系,一般不需要去建系,更简单;
2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建1.搞清随机试验包含的所有基本和所求包含的基本的个数;系;
四解题技巧、概率问题
1.搞清随机试验包含的所有基本和所求包含的基本的个数;
2.搞清是什么概率模型,套用哪个公式;
3.记准均值、方、标准公式;
4.求概率时,正难则反(根据p1+p2+...+pn=1);
5.注意计数时利用列举、树图等基本方法;
6.注意放回抽样,不放回抽样;
7.注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;
8.注意条件概率公式;
9.注意平均分组、不完全平均分组问题。
高考数学大题的解题技巧及解题思想
做数学大题的技巧相关 文章 :一、三角函数题
注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。
二、数列题
1.证明一个数列是等(等比)数列时,下结论时要写上以谁为首项,谁为公(公比)的等(等比)数列;
2.一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的设,否则不正确。利用上设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;
3.证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。
三、立体几何题
1.证明线面位置关系,一般不需要去建系,更简单;
2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;
3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。
四、概率问题
3.记准均值、方、标准公式;
4.求概率时,正难则反(根据p1+p2+...+pn=1);
5.注意计数时利用列举、树图等基本方法;
7.注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;
8.注意条件概率公式;
9.注意平均分:C组、不完全平均分组问题。
五、圆锥曲线问题
1.注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;
2.注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;
六、导数、极值、最值、不等式恒成立(或逆用求参)问题
1.先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号);
2.注意一问有应用前面结论的意识;
3.注意分论讨论的思想;
4.不等式问题有构造函数的意识;
5.恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法);
6.整体思路上保6分,争10分,想14分。
解题思想
1.函数与方程思想
函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程或不等式模型去解决问题。同学们在解题时可利用转化思想进行函数与方程间的相互转化。
2.数形结合思想
中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此建议同学们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。
3.特殊与一般的思想
用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用。
4.极限思想解题步骤
极限思想解决问题的一般步骤为:一、对于所求的未知量,先设法构思一个与它有关的变量;二、确认这变量通过无限过程的结果就是所求的未知量;三、构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。
5.分类讨论思想
同学们在解题时常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。引起分类讨论的原因很多,数学概念本身具有多种情形,数算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。建议同学们在分类讨论解题时,要做到标准统一,不重不漏。
构造函数法在解题中的应用
③若f(x1)·f(b)<0,则令a=x1(此时零点x0∈(x1,b));构造函数法在解题中的应用
利用二分法求方程的近似解的特点:摘要:函数思想是数学思想的有机组成部分,它在数学解题中的应用越来越广泛。本文就构造函数这一方法在不等式、数列、方程有解及恒成立问题等方面的应用举例说明。
:函数思想;构造函数;不等式;方程;应用
函数思想,指运用函数的概念和性质,通过类比联想转化合理地构造函数,然后去分析、研究问题,转化问题并解决问题。因此函数思想的实质是用联系和变化的观点提出数学对象,抽象其数量特征,建立函数关系。
函数思想在数学应用中占有重要的地位,应用范围很广。函数思想不仅体现在本身就是函数问题的高考试题中,而且对于诸如方程、三角函数、不等式、数列、解析几何等问题也常常可以通过构造函数来求解。
根据需要,构造辅助函数是高等数学中一种常用的方法,这种方法也已渗透到中学数学中。首先解题中若遇到有关不等式、方程及最值之类问题,设法建立起目标函数,并确定变量的限制条件,用函数的观点加以分析,常可使问题变得明了,从而易于找到一种科学的解题途径。其次数量关系是数学中的一种基本关系。现实世界的复杂性决定了数量关系的多元性。因此,如何从多变元的数量关系中选定合适的主变元,从而揭示其中主要的函数关系,有时便成了数学问题能否“明朗化”的关键所在。下面我们举例说明构造函数的方法在解题中的应用。
一、构造函数解决有关不等式的问题
有些不等式证明和比较大小的问题,如能根据其结构特征,构造相应的函数,从函数的单调性或有界性等角度入手,去分析推理,证明过程就会简洁又明快。
例1:若 ,则 的大小关系是 。
分析:式中各项的结构相同,只是字母不同,故可构造函数 进行判断。
解:构造函数 ,易证函数 在其区间 是单调递增函数。
例2(2008年山东理):已知函数 其中 为常数。当 时,证明:对任意的正整数 ,当 时,有
证法一:因为 ,所以 。
当 为偶数时,令 则 ( )所以 当 时, 单调递增。又 ,因此 恒成立,所以 成立。当 为奇数时,要证 ,由于 ,所以只需证 ,令 ,则 ( ),所以,当 时, 单调递增,又 ,所以当 时,恒有 ,即 命题成立。
综上所述,结论成立。
证法二:当 时, ,当 时,对任意的正整数 ,恒有 ,故只需证明 。令 则 ,当 时, ,故 在 上单调递增,因此 当 时, ,即 成立。故 当 时,有 ,即 。
试题分析:第二问需要对构造的'新函数 进行“常规处理”,即先证单调性,然后求最值,作出判断。
评注:函数类问题的解题方法要内悟、归纳、整理,使之成为一个系统,在具体运用时自如流畅,既要具有一定的思维定向,也要谨防盲目套用。函数与不等式之间如同一对孪生兄弟,通过对不等式结构特征的分析,来构造函数模型,常常可以收到出奇制胜的效果。此类问题对转化能力要求很高,不能有效转化是解题难以突破的主要原因,要善于构造函数证明不等式,从而体现导数的工具性。
二、构造函数解决数列中的有关问题
数列的实质是函数,用函数思想解数列问题能够加深对数列概念及公式的理解,加强知识点间的联系.
例3:在等数列中,已知 Sp = q , Sq = p ( p ≠q) , 求 Sp+q 的值。
略解:因为 是n的一次函数,点( n , ) 共线,所以点 (p , ) , ( q , ) , ( p + q , ) 共线, 则有 化简即得 Sp+q = -( p + q ) 。
例4:等数列{ }的首项 ,前 项的和为 ,若 ,问 为何值时 ?
解:依题意,设此函数是以 为自变量的二次函数。
故二次函数 的图象开口向下当 时, ,但 中, 当 为偶数时, 时, 当 为奇数时, 时, 。
方程有解、无解问题可以用“变量分离法”转化为求函数的值域,或直接构造函数。
A. (0,1) B.(1,1.25) C.(1.25,1.75) D.(1.75,2)
解析:
例6(2010天津文科数学):设函数f(x)=x- ,对任意 恒成立,则实数m的取值范围是________。:m<-1 解析:本题主要考查了恒成立问题的基本解法及分类讨论思想,属于难题。
高考数学选择题获得满分的技巧有哪些
知 属于区间(1.75,2)高考数学一共有12道选择题,每道5分,总共60分,光选择题就占了高考数学成绩的三分之一还多,所以高考数学想要好,选择题肯定不能丢分。下面是我分享的高考数学选择题拿满分的技巧,一起来看看吧。
6.注意放回抽样,不放回抽样;高考数学选择题拿满分的技巧
排除选项法
选择题因其是四选一,必然只有一个正确,那么我们就可以采用排除法,从四个选项中排除掉易于判断是错误的,那么留下的一个自然就是正确的。
赋予特殊值法
即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的 方法 。用特殊值法解题要注意所选取的值要符合条件,且易于计算。
通过猜想、测量的方法,直接观察或得出结果
这类方法在近年来的高考题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、 总结 、归纳等过程使问题得解。
极端性原则
将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何、立体几何上面,很多计算步骤繁琐、计算量大的题,采用极端性去分析,就能瞬间解决问题。如下题,直接取ab⊥cd的极端情况,取ab中点e,cd中点f,连结ef,令ef⊥ab且ef⊥cd,算出的值即值,无须过多说明。
顺推法
利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。如下题,根据题意,依次将点代入函数及其反函数即可。
5.逆推验证法(代入题干验证法):将选项代入题干进行验证,从而否定错误选项而得出正确的方法。常与排除法结合使用;如下题,代入x=0,显然符合,排除ad;代入x=-1显然不符,排除c。选b。
数形结合法
由题目条件,做出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。如下题,作图后直接得出选项a符合。
递推归纳法
通过题目条件进行推理,寻找规律,从而归纳出正确的方法,例如分析周期数列等相关问题时,就常用递推归纳法。如下题,找找规律即可分析出。
特征分析法
对题设和选择项的特点进行分析,发现规律,归纳得出正确判断的方法。如下题,如果不去分析该几何体的特征,直接用一般的割补方法去做,会比较头疼。细细分析,其实该几何体是边长为2的正方形体积的一半,如此这般,不用算都知道选c。
估算法
有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。如下题,这种没办法解的方程,只能通过估算求解。当然,在可以使用计算器的情况下,估算也可以也,使用table 或者solve功能,可计算约等于0.42。
做选择题时注意各种方法的运用,比较简单的自己会的题正常做就可以了,遇到比较复杂的题时,看看能否用做选择题的技巧进行求解,一般可以综合运用各种方法,达到快速做出选择的效果。填空题也是,比较简单的会的就正常做,复杂的题如果是一个确定的值时,看能否用特殊值代入法以及特例求解法。选择填空题的答题时间要自己掌握好,遇到不会的先放下往后答,我们的目标是把卷子上所有会的题都答上了、都答对了,审题要仔细(一个字一个字读题),计算要准确(一步一步计算),千万不要有马虎的地方。
高考数学答题技巧
1:充分利用考前五分钟
按照大型的考试的要求,考前五分钟是发卷时间,考生填写准考证。这五分钟是不准做题的,但是这五分钟可以看题。我发现很多考生拿到试卷之后,就从个题开始看,我给大家的建议是,拿过这套卷子来,这五分钟是用来制定整个战略的关键时刻。之前没看到题目,你只是空想,当你看到题目以后,你得利用这五分钟迅速制定出整个考试的战略来。
学生拿着数学卷子,不要看选择,不要看填空,先看后边的六个大题。这六个大题的难度分布一般是从易到难。我们为了应付这样的一次考试,提前做了大量的习题,试卷上有些题目可能已经做过了,或者你一目了然,感觉很轻松,我建议先把这样的大题拿下来。大题一般12分左右,这12分如囊中取物,你就有底气了,心情也好了。特别是要看看那个大题,一看那个题目压根儿就不是自己力所能及的,就把它砍掉,只想着后边只有五个题,这样在做题的时候,就能够控制速度和质量。如果倒数第二题也没有什么感觉,你就想,可能今年这个题出得比较难,那么我现在的做法应该是把前边会做的题目踏踏实实做好,不要急于去做后边的题目,因为后边的题目不是正常人能做的题目。
审题一定要仔细,一定要慢。我发现数学题经常在一个字、一个数据里边暗藏着解题的关键,这个字、这个数据没读懂,要么找不着解题的关键,要么你误读了这个题目。你在误读的基础上来做的话,你可能感觉做得很轻松,但这个题一分不得。所以审题一定要仔细,你一旦把题意弄明白了,这个题目也就会做了。会做的题目是不耽误时间的,真正耽误时间的是在审题的过程中,在找思路的过程中,只要找到思路了,单纯地写那些步骤并不占用多少时间。
3:培养自己一次就做对的习惯
现在有些学生,好不容易遇到一个会做的题目,就快速地把会做的题目做错,争取时间去做不会做的题目。殊不知,前面的选择题和后边的大题,难易距是很大的,但是分值的含金量是一样的,有些学生以为前边题目的分数不值钱,后边大题的分数才值钱,不知道这是什么心理。所以我希望学生在考试的时候,一定要培养自己一次就做对的习惯,不要指望腾出时间来检查。越是重要的考试,往往越没有时间回来检查,因为题目越往后越难,可能你陷在那些难题里面出不来,抬起头来的时候已经开始收卷了。
4:要由易到难
一般大型的考试是要有一个铺垫的,比如说前边的题目,往往入手比较简单,越往后越难,这样有利于学生正常的发挥。1979年的高考,数学就吓倒了很多人。它个题就是一个大题,很多学生就被吓蒙了,于是整个考试考得一塌糊涂,就出现一些心态的不稳。所以后期,就因为这样的一些性的试题的出现,不能让一个学生正常发挥,我们在命题的时候一般遵循由易到难的规律,先让学生慢慢地进入状态,再去慢慢地加大难度。有些学生自以为水平很高,对那些简单的题目不屑一顾,所以干脆从一个题开始做,这种做法风险太大。因为一个题一般来讲,难度都很大,你一旦在这个地方卡壳,不仅耽误了你的时间,而且会让你的心情受到很大的影响,甚至影响整场考试的发挥。
当然由易到难并不是说从题一直做到一个,以数学高考题为例,一般数学高考题有三个小高峰:个小高峰出现在选择题的一题,它的难度属于难题的层次;第二个小高峰是填空题的一题,也是比较难的;第三个小高峰出现在大题的一题。我说由易到难,是说要把握住这三个小高峰。
5:控制速度
平常有学生问我:“我在做题的时候多长时间做一个选择题,多长时间做一个填空题,才是比较合理的呢?” 我觉得这个不能一概而论,应该说你平常用什么样的速度做题,考试的时候就用什么样的速度,不要人为地告诉自己,考试的时候要加快速度。其实你考试的时候,速度要是和平常训练的速度距比较大的话,很可能因为你速度一加快,反而导致了质量的下降。一场大型的考试,你会做的题目本身就那么多,如果你加快速度,结果把会做的题目做错,而你腾出的时间去做后边的难题,又长时间地解不出来,那么很可能造成会做的题目得不着分,不会做的题目根本不得分。不要担心“做慢了,做不完”,把握住一点,一个学生的正常考试,如果始终在自己会做的题目上全神贯注的话,这场考试一定是正常发挥的,甚至是超水平发挥。你一直投入到会做的题目中,按照你平常训练的速度,踏踏实实地往前推进。即使你发现时间到了,后边还有题目可能会做但来不及了,我也不认为这是一个令你后悔的结果。结果出来你会发现,你得到的分数往往会比你的实际水平要高。所以考试的时候要控制速度,我觉得这是考试技巧的一个很重要的方面。
6:抓住得分点
7:不会也能得3分
大型考试的那个难题可用四个字概括——防不胜防。这不是正常人做的题目,正常人也别指望在这个题上能够有多大的收获。因此高考时,不必费力去做一题,但绝不是说这个难题就不能得分。你应该有什么心态呢?反正这个题,我也不想做你,那我还怕你吗?无知者无畏,你一不怕它,反而就有勇气了。我也不要求多得分,能得个三四分就行了。可能你突然发现这个题,解出来比较难,但要想得三四分还是比较容易的。我在平常训练学生的时候,有一句话就是“不会也能得3分”。
8:防止慌场
所谓慌场,就是考试的时候,本来以为这个题对自己来讲难度不大,结果一看道题,当头一棒,怎么也找不着感觉。干脆把题放过去,再看第二题,发现第二题更难。连续碰上这么几个难题,心里就慌了。这一慌,脑子出现一片空白,本来会做的题目也不会做了。这种现象称为慌场,几乎每个学生都会遇到这样的现象。
高考时真遇到这样的事情,你先闭目沉思,然后深呼吸,控制自己的情绪,心里就这么想:反正这一场考试已经这样了,我也别着急了,能做出一个是一个,也许我先把最简单的题目做出来,心态就平和了,头脑就冷静了,再回过头来看刚才这些题目,就找到思路了。所以把刚才遇到挫折的那几个题目放弃,去看其他的题目,而且看其他的题目时,也别指望有大的收获,这样很容易冷静下来,可能很快又找着感觉了。最重要的一点是,你应该这样想:同样的老师、同样的教材,这个题目我既然不会,其他同学也不会轻松的,大家是公平竞争。这样一想,你不就不慌了吗?
考完以后千万别急着离开考场。考完试之后一定要检查一下,你的试卷集中了没有,一卷、二卷是不是都交齐了。很多考试,包括高考,经常会有老师把学生的卷子收走了,却把答题卡落下了,或者本来五张试卷,只收了四张。还有些考生考完了,把卷子放到桌面上走了,结果下一场来考试的时候,突然发现还有一张卷子没收。这还是比较幸运的,交给老师以后,大不了老师受点,学生的卷子还没丢。但是你仔细想一想,要是你下一场没发现落下试卷,人家五张卷子,你只有四张卷子,受损失的是你本人。所以考完试以后,不要急于离开考场,要确认该交的卷子都被老师收走了以后再离开。
高考数学各题型的解题技巧
一、三角函数题
注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。
二、数列题
1、证明一个数列是等(等比)数列时,下结论时要写上以谁为首项,谁为公(公比)的等(等比)数列;
三、立体几何题
1、证明线面位置关系,一般不需要去建系,更简单;
2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;
3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。
四、概率问题
1、搞清随机试验包含的所有基本和所求包含的基本的个数;
2、搞清是什么概率模型,套用哪个公式;
3、记准均值、方、标准公式;
4、求概率时,正难则反(根据p1+p2+...+pn=1);
5、注意计数时利用列举、树图等基本方法;
6、注意放回抽样,不放回抽样;
7、注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;
8、注意条件概率公式;
9、注意平均分组、不完全平均分组问题。
五、圆锥曲线问题
1、注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;
2、注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;
3、战术上整体思路要保7分,争9分,想12分。
六、导数、极值、最值、不等式恒成立(或逆用求参)问题
1、先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号);
2、注意一问有应用前面结论的意识;
3、注意分论讨论的思想;
4、不等式问题有构造函数的意识;
5、恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法);
求函数解析式时,可以用构造函数法,请问什么是构造函数法
4、求概率时,正难则反(根据p1+p2+...+pn=1)。已知f(x+1)=x^2,求f(x).
简析:运用数列中的通项公式的特点,把数列问题转化为函数问题解决。设x+1=t,那么x=t-1,
也就是说f(t)=(t-1)^2,
不知道函数概念你弄清没有,
在定义域、值域、对应法则都相同的情况下,
f(x),f(t),f(a)指的其实是一个函数,
实际上也就求出了f(x),
所以f(x)=(x-1)^2.
大概就是这么回事,不懂可以继续追问.
【你是哪里的,江苏这类题高考没怎么出现过,就是上课会提到,本人今年刚高考完。
2014年安徽理科数学21题的解答方法是什么啊?还是很难的,难怪是高考压轴题啊,毫无思路
三、构造函数解决方程有解、无解及若干个解的问题本题是一道压轴题,考查的知识众多,涉及到函数,数列,不等式,利用的方法有分析法与综合法等,综合性很强,难度较大.看这里
2:进入考试阶段先要审题设实数c>0,整数p>1,n∈N
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 836084111@qq.com 举报,一经查实,本站将立刻删除。