1. 首页 > 学习资讯 >

山东高考数学例题解析 山东高考试题数学

2019年山东高考生物试卷难度点评说明解读与分析

(1)熟练掌握各基本初等函数的求导公式以及和、、积、商的求导法则,复合函数的求导法则。

山东高考生物试卷难度点评说明解读与分析

山东高考数学例题解析 山东高考试题数学山东高考数学例题解析 山东高考试题数学


山东高考数学例题解析 山东高考试题数学


(2) 已知 (a,b∈R),其中i为虚数单位,则a+b=

近日,山东省招考院发布了《普通高等学校招生全国统一考试山东卷考试说明》(以下简称《考试说明》)。山东高考将继续采用“3+X”的模式。根据统一部署,山东省普通高考外语、文科综合、理科综合科目将使用全国卷,山东自行命制语文、数学科目的试题。记者时间联系山东师范大学附属中学的10位名师对各科考试大纲进行了权威解读。

生物:考查形式更加灵活题的分值分布有变化

解读人:山东师大附中高三生物组长代立鹏

从2017年高考开始,山东省理综考试将试行全国新课标卷,新课标卷与山东卷相比,生物部分主要变化是每个题的分值分布有所不同。全国新课标卷与山东卷中生物部分的试题数量相同,都是6个选择题,4个非选择题,选做题二选一,满分都是90分,但是每个题的分值有所变化,选择题有每题5分变为6分,总分36分;选做题由满分12分变为15分。考试内容略有异。全国新课标卷第二:上下浮动20分的区间,比如分数是550分,就找到530-570分这个区间。然后按照这个区间,看往年的招生学校和专业。的非选择题部分与山东卷相似,重点考查高中生物4大核心主干知识:细胞代谢,遗传,生命活动的调节,种群、群落与生态系统。尤其是细胞代谢中的光合作用和细胞呼吸,以及遗传基本规律更是核心主干知识中的难点。选修题目中往往会涉及相关的必修内容的考查,对于选修三《现代生物科技专题》,山东省卷对选修三的生态工程专题不做要求,而全国卷是作要求的,可与必修三中“生态系统部分”的相关知识结合起来考查。全国新课标卷的非选择题的考查形式更加灵活,特别是实验题,可以是设计实验、纠正实验中的错误、续写步骤、对题目中的实验进行评价等等。

复习建议是加大选择题的训练力度,因为选择题每题的分值增加,总分有所增加。突出主干知识的复习,重视教材。无论山东卷还是全国新课标卷,都是考查高中生物学的主干知识。现阶段的二轮复习,一定量的试题训练是必要的,但是不能只做题,而将教材丢在一边,高考试题都是“源于教材,高于教材”,因此,无论哪个阶段的复习,都要对教材有足够的重视。注重学生答题规范性的训练和指导。现在大多数学校在日常的考试中都会实行网上阅卷,这样学生拿到试卷后没有老师批阅的痕迹,不容易知道哪里扣分,因此建议教师尽量使用手工阅卷,这样更容易看出学生出错的地方,便于对学生的规范答题和对其给予有针对性的指导。

高中数学问题?

⑤列表:列出分布列。

导数是高考数学必考的内容,近年来高考加大了对以导数为载体的知识问题的考查,题型在难度、深度和广度上不断地加大、加深,从而使得导数相关知识愈发显得重要。下面是我为大家整理的关于高中数学导数难题解题技巧,希望对您有所帮助。欢迎大家阅读参考学习! 1高中数学导数难题解题技巧 1.导数在判断函数的单调性、最值中的应用 利用导数来求函数的最值的一般步骤是:(1)先根据求导公式对函数求出函数的导数;(2)解出令函数的导数等于0的自变量;(3)从导数性质得出函数的单调区间;(4)通过定义域从单调区间中求出函数最值。 2.导数在函数极值中的应用 利用导数的知识来求函数极值是高中数学问题比较常见的类型。利用导数求函数极值的一般步骤是:(1)首先根据求导法则求出函数的导数;(2)令函数的导数等于0,从而解出导函数的零点;(3)从导函数的零点个数来分区间讨论,得到函数的单调区间;(4)根据极值点的定义来判断函数的极值点,再求出函数的极值。 3.导数在求参数的取值范围时的应用 利用导数求函数中的某些参数的取值范围,成为近年来高考的 热点 。在一般函数含参数的题中,通过运用导数来化简函数,可以更快速地求出参数的取值范围。 2高中数学解题中导数的妙用 导数知识在函数解题中的妙用 函数知识是高中数学的重点内容,其中包括极值、图像、奇偶性、单调性等方面的分析,具有代表性的题型就是极值的计算和单调性的分析,按照普通的解题过程是通过图像来分析,可是对于较难的函数来说,制作图像不仅浪费时间,而且极容易出错,而在函数解题中应用导数简直就是手到擒来。 例如:函数f(x)=x3+3x2+9x+a,分析f(x)的单调性。这是高中数学中常见的三次函数,在对这道题目进行单调性分析时,很多学生根据思维定式会采用常规的手法画图去分析单调区间,但由于未知数a的存在而遇到困难。如果考虑用导数的相关知识解决这一问题,解:f’(x)=-3x2+6x+9,令f’(x)>0,那么解得x<-1或者x>3,也就是说函数在(-∞,-1),(3,+∞)这个单调区间上单调递减,这样就能非常容易的判断函数的单调性。 导数知识在方程求根解题中的妙用 导数知识在方程求根中的应用属于一项重点内容,在平时的数学练习中以及高考的考察中均曾以不同的难度形式出现过。导数知识能针对方程求根,根据导函数的求解能判断原函数的根的个数。在解这一类问题的时候,教师要善于学生利用导函数与X轴的交点个数来判断方程根的个数。 例如,某一证明问题:方程x-sinx=0,只有一个根x=0。在分析b=ln2=1/log2,3这一问题时实际上就是利用函数的单调性质和特殊值来确定f(x)=0。其证明过程需首先利用到导数知识,令f(x)=x-sinx,定义域为R,求导f(x)=1-cosx>0,再利用函数单调性及数形结合思想,求得x=0是次方程的根。此内容的应用就是最为典型的导数知识在方程求根中的应用。 3高中数学的解题技巧 学会审题,才会解题 很多考生对审题重视不够,往往要做的题目都没有看清楚就急于下笔,审好题是做题的关键,审题一一定要逐字逐句的看清楚,通过审题发现题目有无易漏、易错点,只有仔细审题才能从题目中获取更多的信息,只有挖掘题目中的隐含条件、启发解题思路,提醒常见解题误区和自己易出现的错误,才能提高解题能力。只有认真的审题,谨慎的态度,才能准确地揣摩出题者的意图,发现更多的信息,从而快速找到解题方向。 考前保持头脑清醒,要摒弃杂念,不断进行积极的心理暗示,创设宽松的氛围,创设数学情境,进而酝酿数学思维,静能生慧,满怀信心的进行针对性的自我安慰,以平稳自信、积极主动的心态准备应考。这就要求我们要善于观察。 先做简单题,后做难题 从我们的心理学角度来讲,一般拿到试卷以后,心情比较紧张,此时不要急于下手解题,可以先对试题多少、分布、难易程度从头到尾浏览一遍,做题要先易后难,做到心中有数,一般简单的题目占全卷60%,这是很重要的一部分分数,见到简单题要细心解题,尽量使用数学语言,而且要更加严谨以振奋精神,养成良好的审题习惯鼓舞信心。 如果顺序做题既耗费时间又拿不到分,会做的题又被耽误了。所以先做简单题,多年的 经验 告诉我们,当你解题不顺利时,更要冷静,静下心来,沉住气,根据自己的实际情况,果断跳过自己不会做的题目,把简单的都做完,如果我们能把这部分的分数拿到,就已经打了胜仗,再集中精力做比较难的题,有了胜利的信心,面对住偏难的题更要有耐心,不要着急,可以先放弃,但也要注意认真对待每一道题,不能走马观花,要相信自己。到应有的分数。还有善于把难题转换成简单的题目的能力。 4高中数学的解题技巧 审题技巧 审题是正确解题的关键,是对题目进行分析、综合、寻求解题思路和 方法 的过程,审题过程包括明确条件与目标、分析条件与目标的联系、确定解题思路与方法三部分。(1)条件的分析,一是找出题目中明确告诉的已知条件,二是发现题目的隐含条件并加以揭示。目标的分析,主要是明确要求什么或要证明什么;把复杂的目标转化为简单的目标;把抽象目标转化为具体的目标;把不易把握的目标转化为可把握的目标。 (2)分析条件与目标的联系。每个数学问题都是由若干条件与目标组成的。解题者在阅读题目的基础上,需要找一找从条件到目标缺少些什么?或从条件顺推,或从目标分析,或画出关联的草图并把条件与目标标在图上,找出它们的内在联系,以顺利实现解题的目标。(3)确定解题思路。一个题目的条件与目标之间存在着一系列必然的联系,这些联系是由条件通向目标的桥梁。用哪些联系解题,需要根据这些联系所遵循的数学原理确定。解题的实质就是分析这些联系与哪个数学原理相匹配。 类型题掌握,提升发散性 学习的过程也是知识的积累过程,所以,不论是哪一学科,都不能期待能一朝实现学校目标,而数学亦是如此。所以,在日常解答某些类型数学题的时候,对其题型加以掌握,这是提高学生解题能力,培养学生解题技巧的重要途径之一,并且效果良好。 但是有一点我们必须铭记,类型习题的整理和记忆是指对其解题思路的记忆,并不是对其解答过程的记忆。如一位学生只是对这道题的解题过程加以记录,不去分析,不去思考其解答方式的亮点,那么即使他整理再多的习题,也无法取得应有的效果,只会将学习停留在表面。

②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。

高中数学导数难题解题技巧相关 文章 : 1. 高中数学解题技巧冲刺得分题 2. 高中数学六种解题技巧与五种数学答题思路 3. 高二数学不好怎么办?遇到困难怎么办 4. 高中数学导数练习题及 5. 高中数学导数测试题及 6. 高二数学学习方法指导与学习方法总结 7. 高二数学:学习方法 导数如何学 8. 高中数学大题的解题技巧及解题思想 9. 高中数学解答题8个答题模板与做大题的方法 10. 高考数学答题技巧

一道很好的解析几何题目!题目不难,计算量也不大,但含金量很高!

问题1完全可以公式化,甚至问题2中分子分母的系数都可以公式化。上对问题1的解法就不祥论,但上对问题2的解法太出格,其实就是基本不等式问题。

上面中对问题2的解法过程太简洁,有可能题主看不懂,下面补充一下:

(2a + 1)[1/|PC| + 9/(|PD| + 1)]

=[|PC| + (|PD| + 1)][1/|PC| + 9/(|PD| + 1)]

=1 + 9|PC|/(|PD| + 1) + (|PD| + 1)/|PC| +9

≥ 1 + 9 + 2√《[9|PC|/(|PD| + 1)][(|PD| + 1)/|PC|]》

=1+9+6=(1+3)^2=16

你应该是文科吧 这么多门课

不要认为自己可以轻松搞定每一道题

每个人都会有不会的题目

要注意调整心态

全国卷高中数学高考题解答方法

高考,不仅是对知识的检阅,也是对考生心态的一种考验。同学们只要放松心情,保持好心态,一定能考出好成绩。这次我给大家整理了全国卷高中数学高考题解答 方法 ,供大家阅读参考。

目录

全国卷高中数学高考题解答方法

高考数学填空题答题技巧

高考数学解答题技巧1、点代入直线:如果某个点在某条直线上,将点的坐标代入这条直线的方程;

全国卷高中数学高考题解答方法

1、小题不能大做;

2、不要不管选项;

3、能定性分析就不要定量计算;

4、能特值法就不要常规计算;

5、能间接解就不要直接解;

6、能排除的先排除缩小选择范围;

7、分析计算一半后直接选选项;

8、三个相似选相似。可以利用简便方法进行答题。

<<<

高考数学填空题答题技巧

1、直接法:这是解填空题的基本方法,它是直接从题设条件出发、利用定义、定理、性质、公式等知识,通过变形、推理、运算等过程,直接得到结果。

3、数形结合法:对于一些含有几何背景的填空题,若能数中思形,以形助数,则往往可以简捷地解决问题,得出正确的结果。

4、等价转化法:通过“化复杂为简单、化陌生为熟悉”,将问题等价地转化成便于解决的问题,从而得【解析】因为当x=2或4时,2x - =0,所以排除B、C;当x=-2时,2x - = ,故排除D,所以选A。出正确的结果。

5、图像法:借助图形的直观形,通过数形结合,迅速作出判断的方法称为图像法。文氏图、三角函数线、函数的图像及方程的曲线等,都是常用的图形。

6、构造法:在解题时有时需要根据题目的具体情况,来设计新的模式解题,这种设计工作,通常称之为构造模式解法,简称构造法。

<<<

高考数学解答题技巧

1、三角变换与三角函数的性质问题

解题方法:①不同角化同角;②降幂扩角 ;③化f(x)=Asin(ωx+φ)+h ;④结合性质求解。

答题步骤:

③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。

2、解三角形问题

解题方法:

(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。

(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。

答题步骤:

①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。

③求结果。

3、数列的通项、求和问题

解题方法:①先求某一项,或者找到数列的关系式;②求通项公式;③求数列和通式。

答题步骤:

①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。

②求通项:根据数列递推公式转化为等或等比数列求通项公式,或利用累加法或累乘法求通项公式。

③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。

④写步骤:规范写出求和步骤。

4、离散型随机变量的均值与方

解题思路:

(1)①标记;②对分解;③计算概率。

答题步骤:

①定元:根据已知条件确定离散型随机变量的取值。

②定性:明确每个随机变量取值所对应的。

③定型:确定的概率模型和计算公式。

④计算:计算随机变量取每一个值的概率。

⑥求解:根据均值、方公式求解其值。

5、圆锥曲线中的范围问题

解题思路;①设方程;②解系数;③得结论。

答题步骤:

①提关系:从题设条件中提取不等关系式。

③得范围:通过求解含目标变量的不等式,得1、选题难度适中:在答题时,应尽量避免需要大量计算或涉及较难理解的题目,先从简单的题目入手,节约时间,以便更好地把握重点。所求参数的范围。

解题思路:①一般先设这种情况成立(点存在、直线存在、位置关系存在等);②将上面的设代入已知条件求解;③得出结论。

答题步骤:

①先定:设结论成立。

②再推理:以设结论成立为条件,进行推理求解。

③下结论:若推出合理结果, 经验 证成立则肯。 定设;若推出矛盾则否定设。

<<<

全国卷高中数学高考题解答方法相关 文章 :

★ 全国卷数学选择题答题规律技巧

★ 解答高考数学试题策略及答题思路

★ 全国卷高考数学技巧选择题

★ 全国卷数学答题题型

★ 高考数学题型与技巧

★ 高考数学试卷设计及解题思路介绍 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

高考数学函数答题方法和技巧

首先你要有合适的目标

【 #高三# 导语】怎么答好高考数学函数题? 整理了高考数学函数题答题技巧和方法,供参考。

高考数学高效解题方法 1.考前要摒弃杂念,排除干扰思绪,使大脑处于"空白”状态,创设数学情境,进而酝酿数学思维,提前进入"角色”, 通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压励, 轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。

高考函数体命题方向

高考函数与方程思想的命题主要体现在三个方面

①是建立函数关系式,构造函数模型或通过方程、方程组解决实际问题;

②是运用函数、方程、不等式相互转化的观点处理函数、方程、不等式问题;

高考数学函数题答题技巧

对数函数

对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。

(1)对数函数的定义域为大于0的实数。

(2)对数函数的值域为全部实数。

(3)函数总是通过(1,0)这点。

(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。

(5)显然对数函数。

指数函数

指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数为定义域,则只有使得

可以得到:

(1)指数函数的定义域为所有实数的,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。

(2)指数函数的值域为大于0的实数。

(3)函数图形都是下凹的。

(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于y轴与x轴的正半轴的单调递减函数的位置,趋向分别接近于y轴的正半轴与x轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。

(6)函数总是在某一个方向上无限趋向于x轴,相交。

(7)函数总是通过(0,1)这点。

(8)显然指数函数。

奇偶性

(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。

(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。

(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。

说明:①奇、偶性是函数的整体性质,2011新课标高考理科数学填空一题的详细解题过程。对整个定义域而言

②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。

(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)

函数的性质与图象

函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫.

复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是:

1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性.

2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数值和最小值的常用方法.

3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力.

这部分内容的重点是对函数单调性和奇偶性定义的深入理解.

函数的单调性只能在函数的定义域内来讨论.函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制.

这部分的难点是函数的单调性和奇偶性的综合运用.根据已知条件,调动相关知识,选择恰当的方法解决问题,是对学生能力的较高要求.

山东高考数学难度

2.求最值、极值或证明不等式,运用函数的导数,借助单调性研究问题。

山东高考数学难(2)①确定ξ取值;②计算概率;③得分布列;④求数学期望。度如下:

从试卷难度上看。山东省用的是新高考I卷,据考生反应新高考I卷相比于全国甲卷、全国乙卷等试卷类型难度上要有所提升。预计2023山东高考试题难度是普通水平,中等难度。

从近十年的高考试卷难度来看,总体上难度呈现逐渐下降趋势。从试卷难度上看,近几年,山东高考一直采用新高考I卷。2023年高考难度不是最难的一年,也不会很轻松,至少和2022基本持平。

高考志愿填报过程:

:分数出来以后,找到一分一位表,把位次换算出来。因为高考录取不是卡分数,而是卡位数,这点很关键。

这个区间里的学校,可以成为学生的备选志愿。毕竟不能只填写自②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。己的目标院校,要给自己留出一定的选择区间。

第三:学生和家长,把备选区间里的学校,追个的去分析专业和学校实力。不要怕麻烦,毕竟我们在没做了解之前,可能有些固步自封,忽略了很多优质的好学校和专业。

第四:根据冲、稳、保的记录要求进行为此匹配,用排除法的方式进行志愿的筛选。找到区间是个大海捞针的过程,这个过程就是精细化,筛选自己可能就读的院校。

第五:按照学生的意向,再次调整志愿的顺序。这个过程要仔细研究的是学校的招生章程和要求,然后填报好保底志愿,可以很好地避免被退档和滑档的情况发生。

吉林高考数学试题及解析点评难不难,附word文字完整版

③对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。是利用函数与方程思想研究数列、解析几何、立体几何等问题.在构建函数模型时仍然十分注重“三个二次”的考查.特别注意客观形题目,大题一般难度略大。

高考生考后关注的重要问题之一就是试卷及分析点评,因为这关系到2023吉林高考分数线的高低,本文就此问题整理了吉林高考数学试题难易程度分析相关信息内容,供大家查阅参考。

做题是有用的 但是如果做到恶心就适得其反了

高考数学解题法 数学解题套路

②找函数:用一个变量表示目标变量,代入不等关系式。

高考数学有哪些解题方法呢,数学的套路有什么呢,下面我为大家分析一下,仅供大家参考。

【】

高考数学导数解题方法 导数的基本问题

a=log3,2=1/log2,3

1.题型:

1).切线问题。

2).单调性,极值,值域,最值问题。

4).不等式恒成立、存在性、不等式证明问题。

5).与数列、不等式、解析几何的综合问题。

2.常规步骤:

1)求导数并变形,写出定义域。

变形的方法:

③.指数式:提取公因式。

④根式:分子有理化

2)解方程 , 判断导数的正负

判断导数正负的方法:

①.检验法。②.图像法。③.单调性法。④.求导数的导数。

3)列表由导函数的正负确认原函数的单调性和极值、最值

4)画函数草图解决问题。

1.求幂指函数的三种未定式,运用e抬头法转为基本未定式,然后再利用罗必达法则和等价无穷小量求极限。

3.微积分中值定理的运用,运用找原函数法(积分法)、公式法或者经验法等构造辅助函数证明。

4.二重积分的计算,运用“X-型(先Y后X),Y-型(先X后Y),-型(先r后)”。

2.良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、 立即下手解题,而应通览一遍整套试题,摸透题情,然后稳一两个易题熟题,让自己产生"旗开得胜”的快意,从而有一一个良好的开端,以振奋精神,鼓舞信心,很快进入思维状态,

3. 逐步深入纠错法 巩固薄弱环节管理学上的“木桶理论”说:一只水桶盛水多少由最短板决定,而不是由最长板决定。学数学也是这样,数学考试成绩往往会因为某些薄弱环节大受影响。因此,巩固某个薄弱环节,比做对一百道题更重要。

高中数学 高考题大题 数学高手入 在线等 不要的 求详细过程

一般地,对于函数f(x)

这一题首先是求导,解得f'(x)=3x^2+a g'(x)=2x+b

接着由条件可知在区间上,有(3x^2+a)(2x+b)≥0

接着再画图f'(x)=3x^2+a,是一个顶点为(0,a)的,开口向上的抛物线。

同样画g'(x)=2x+高考考试科目b,是一条直线。

你确定题目没有给a和b哪个大,没给的话,题目复杂很多了。

分两种情况讨论了,先设b大于二、填空题9~14 每小题6分 共30分a,所以区间就是(a,b),根据图像,我们可以知道直线与x轴的交点是(-b/2,0),若b大于0的话,所以就有b大于-b/2,那在区间(-b/2,0)上,g'(x)大于0,而f'(x)小于0,所以b不能大于0.

当b不大于0时,交点(-b/2,0)在y轴右边,或者y轴上(b=0),那么就有g'(x)在区间(a,b)上恒小于等于0,那么则表明f'(x)在(a,b)上也是恒小于等于0,通过图像可以发现,当x小于-√-a/3时,f'(x)大于0,所以就有a要大于等于-√-a/3,解得a大于等于-1/3.所以有a的范围是【-1/3,0),b的范围是(a,0】,所以就有|a-b|的值为1/3.

当b小于a时,那就直接有b小于0了,做图和上面一样,解得a大于等于-1/3,b大于等于-√-a/3,结果就解不下去了。

数学突破吗 有点难 不过今年高考130分以上应该不成问题 首先分析一下近几年的高考题 一年简单紧接着一年难 08年是最近几年最难的 09年不会太难 复习时以基础题和中档体为主 少做难题 考试时 基础和中档都会的话 130没问题 其次难题上拿分 讲究技巧 按照你平时解题的习惯来会多少写多少 不会的话先代公式然后代数也可以得分 千万不要不写 基础题中档题是以公式的基本变换和应用为主首先要记牢公式 熟悉题型 掌握一般的解题规律 有意识的记一下思路 再者注意把握做题速度 一定要快而准 要有一定的习题练习量 重点把握一下思路 平时也可看一下难题但不要浪费时间 看找思路有印象就行 注意一下选择填空的解题技巧力争提升一下速度 注意技巧和平时老师总结的结论很重要 一定要记牢 个人意见 仅供参考

2019高考数学选择题多少分 附送选择题快速解题技巧

有一项是满足题目要求的.

高考数学选择题在高考试卷中所占比例较大,具有题小、基础、快速、灵活的特征,下面是我整理关于高考数学选择的一些内容,希望对大家有所帮助。

①.整式:因式分解或配方。

高考数学选择题分值有多少 高考数学中,共有选择题12道,每题5分,共60分。

高考选择题仅限于全国卷,有些地方自己出的试卷可能情况不一样!全国卷数学分值分布:选择60(12道)、填空20(4道)、大题70(12道各十二分+一道选做10分的题)。

高考数学全国卷卷题型分布情况详解 一、选择题 1~8 每小题5分 共40分

三、解答题

15.三从题干(或选项)出发,通过选取特殊情况代入,将问题特殊化或构造满足题设条件的特殊函数或图形位置,进行判断.特殊化法是“小题小做”的重要策略,要注意在怎样的情况下才可使用,特殊情况可能是:特殊值、特殊点、特殊位置、特殊函数等。角函数或者解三角形 13分

16.概率题 13分

17.立体几何14分 (16 17位置可能互换)

18.导数题 13分

20.定义新运算 推理与证明 13分

共计150分

二、排除法

当选择题从正面突破比较复杂时,可以根据一些性质从反面排除一些错误的选项,常用于解不等式,,选项为范围的题目。

三、代入检验法

最难高考数学压轴题

19.解析几6、解析几何中的探索性问题何体 椭圆 双曲线 抛物线 之类的 14分

一般高考的一道压轴题的考试难度是的,因为其综合性比较强,即使是数学比比较不错的的考生,的一道题也很少能得满分。

并且一道压轴题的分数一般还比较高,想要高考数学能够得高分,那么一道大题必须不能丢太多的分数,一般一道压轴题的考试出题点基本上固定的,一般都是解析几何、数列、导数等,或者综合性大一些的还可能涉及多一些的知识点。

如果应对高考数学一道压当题目是求值以及计算范围相关题目时,如果直接计算比较复杂,可以将四个选项一一代入进行检验,从而得到正确的。轴题

高考数学的出题点基本上我们都有所了解,所以在平时备考的时候应该注意有针对性的练习,适当地去做专项练习,在平时备考的时候做一些考试的大题,然后加强对知识点的理解,熟悉考试题型和考试内容,对于有问题不理解的地方找老师或者数学比比较不错的的同学帮助讲解,帮助自己了解相应的思路逻辑,下次出现类似的题型能够更加轻松的应对。

高考数学大题题型总结

导语:高考数学就是多题型的考试,需要考生多做多总结,数学网整理了高考数学题型:多做典型题多归纳总结,帮助大家提升。接下来我将跟大家一起来分享关于高考数学大题题型总结,欢迎大家的借鉴参考!希望文章能够帮助到大家!

高考数学题型:多做典型题多归纳总结

多做典型题

众所周知,学好数学要多做题,多做题能熟能生巧,但是多做题并不等于滥做题、盲目做题,而是要多做典型有代表性的题,比如说每年的真题,各个区的模拟考试题,高中化学,会做的就不做,专门做不熟的、针对自己薄弱的题型,反复做,只有熟能生巧后才能做题材速度上去,才能从量变到质变产生一个飞跃。

所说的“多”是指题目类型,而不仅仅单纯只是题目数量多。数学中题目多,通过合并,题目类型就有限了,只要把各种类型的题目各自做一定数量,加上细心领悟分析,就会发现题目的规律,进而归纳和总结出不同类型的题。

善归纳总结

在复习过程中,不仅要做典型的题,而且还要善于归纳总结。有些同学就只喜欢做难题,而忽略了基础忽略了做题后的归纳与总结,总结出解题过程中的方法与技巧,总结出知识点内在的区别与联系。

实际上,所谓的难题、综合题都是由几个知识点综合在一起,如果你把基础打扎实了,各个知识点弄通了,难题综合题也就迎刃而解了,你没有发现吗?每个大题都有2-4个小问题,每个小问题单独掰开来看就是一个基础题,只不过是一个小问可能与前一个小问有关联而已。只要你善于去归纳总结,你就会发现各个知识点之间的内在联系,找到它们的关键的核心问题。

一、解析几何(圆锥曲线)

高考解析几何剖析:

1、很多高考问题都是以平面上的点、直线、曲线(如圆、椭圆、抛物线、双曲线)这三大类几何元素为基础构成的图形的问题;

2、演绎规则就是代数的演绎规则,或者说就是列方程、解方程的规则。

有了以上两点认识,我们可以毫不犹豫地下这么一个结论,那就是解决高考解析几何问题无外乎做两项工作:

1、几何问题代数化。

2、用代数规则对代数化后的问题进行处理。

高考解析几何解题套路及各步骤作规则

步骤一:(一化)把题目中的点、直线、曲线这三大类基础几何元素用代数形式表示出来(“翻译”);

口诀:见点化点、见直线化直线、见曲线化曲线。

1、见点化点:“点”用平面坐标系上的坐标表示,只要是题目中提到的点都要加以坐标化;

2、见直线化直线:“直线”用二元一次方程表示,只要是题目中提到的直线都要加以方程化;

3、见曲线化曲线:“曲线(圆、椭圆、抛物线、双曲线)”用二元二次方程表示,只要是题目中提到的曲线都要加以方程化;

步骤二:(二代)把题目中的点与直线、曲线从属关系用代数形式表示出来;如果某个点在某条直线或曲线上,那么这个点的坐标就可代入这条直线或曲线的方程。

口诀:点代入直线、点代入曲线。

2、点代入曲线:如果某个点在某条曲线上,将点的坐标代入这条曲线的方程;

这样,每代入一次就会得到一个新的方程,方程逐一列出后,这些方程都是获得的基础,就是解方程组的问题了。

3、在方程组的求解中,有时候能够直接求解,如果不能直接求解的,则采用下面这套等效规则来处理可以达到同样的处理效果,并让方程组的求解更简单。

二、立体几何篇

高考立体几何试题一般共有4道(选择、填空题3道, 解答题1道), 共计总分27分左右,考查的知识点在20个以内。 选择填空题考核立几中的计算型问题, 而解答题着重考查立几中的逻辑推理型问题, 当然, 二者均应以正确的空间想象为前提。 随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。从历年的考题变化看, 以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。

知识整合

1.有关平行与垂直 (线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。

2. 判定两个平面平行的方法:

(1)根据定义--证明两平面没有公共点;

(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;

(3)证明两平面同垂直于一条直线。

3.两个平面平行的主要性质:

(1)由定义知:“两平行平面没有公共点”。

(2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。

(3)两个平面平行的性质定理:”如果两个平行平面同时和第三个平面相交,那么它们的交线平行“。

(4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。

(5)夹在两个平行平面间的平行线段相等。

(6)经过平面外一点只有一个平面和已知平面平行。

以上性质(2)、(3)、(5)、(6)在课文中虽未直接列为”性3. 培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法.质定理“,但在解题过程中均可直接作为性质定理引用。

解答题分步骤解答可多得分

1. 合理安排,保持清醒。 数学考试在下午,建议中午休息半小时左右,睡不着闭闭眼睛也好,尽量放松。然后带齐用具,提前半小时到考场。

2. 通览全卷,摸透题情。 刚拿到试卷,一般较紧张,不宜匆忙作答,应从头到尾通览全卷,尽量从卷面上获取更多的信息,摸透题情。这样能提醒自己先易后难,也可防止漏做题。

3 .解答题规范有序。 一般来说,试题中容易题和中档题占全卷的80%以上,是考生得分的主要来源。对于解答题中的容易题和中档题,要注意解题的规范化,关键步骤不能丢,如三种语言(文字语言、符号语言、图形语言)的表达要规范,逻辑推理要严谨,计算过程要完整,注意算理算法,应用题建模与还原过程要清晰,合理安排卷面结构……对于解答题中的难题,得满分很困难,可以采用“分段得分”的策略,因为高考(微博)阅卷是“分段评分”。比如可将难题划分为一个个子问题或一系列的步骤,先解决问题的一部分,能解决到什么程度就解决到什么程度,获取一定的分数。有些题目有好几问,前面的小问你解答不出,但后面的小问如果根据前面的结论你能够解答出来,这时候不妨引用前面的结论先解答后面的,这样跳步解答也可以得分。

三、数列问题篇

数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等数列、等比数列,求极限和数学归纳法综合在一起。探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。

近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等数列与等比数列的概念、性质、通项公式及求和公式。(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。(3)数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为一题难度较大。

知识整合

1. 在掌握等数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;

2. 在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。

四、导数应用篇

专题综述

导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的.学习,主要是以下几个方面:

1. 导数的常规问题:

(1)刻画函数(比初等方(Ⅱ)求直线PB与平面PCD所成角的大小;法细微);

(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);

(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于 次多项式的导数问题属于较难类型。

3. 导数与解析几何或函数图象的混合问题是一种重要类型,也是高考(微博)中考察综合能力的一个方向,应引起注意。

知识整合

1. 导数概念的理解。

2. 利用导数判别可导函数的极值的方法及求一些实际问题的值与最小值。 复合函数的求导法则是微积分中的重点与难点内容。课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。

3. 要能正确求导,必须做到以下两点:

(2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。

五、排列组合篇

1. 掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。

2. 理解排列的意义,掌高考数学大题题型总结握排列数计算公式,并能用它解决一些简单的应用问题。

3. 理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。

4. 掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。

5. 了解随机的发生存在着规律性和随机概率的意义。

6. 了解等可能性的概率的意义,会用排列组合的基本公式计算一些等可能性的概率。

7. 了解互斥、相互的意义,会用互斥的概率加法公式与相互的概率乘法公式计算一些的概率。

8. 会计算在n次重复试验中恰好发生k次的概率。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 836084111@qq.com 举报,一经查实,本站将立刻删除。

联系我们

工作日:9:30-18:30,节假日休息