高一数学三角函数公式大全
补充练习:sin(-240°)(3分钟)高一数学三角函数的公式有哪些,哪些公式很重要呢?不了解的小伙伴们看过来,下面由我为你精心准备了“高一数学三角函数公式大全”,持续关注本站将可以持续获取更多内容!
高考数学中三角函数_高考数学三角函数大题
高考数学中三角函数_高考数学三角函数大题
高一数学三角函数公式
三角函数公式
sinα=∠α的对边/斜边
cosα=∠α的邻边/斜边
tanα=∠α的对边/∠α的邻边
cotα=∠α的邻边/∠α的对边
Sin2A=2SinA?CosA
Cos2A=CosA2-SinA2=1-2SinA2=2CosA2-1
tan2A=(2tanA)/(1-tanA2)
(注:SinA2是sinA的平方sin2(A))
三倍角公式
sin3α=4sinα·sin(π/3+α)sin(π/3-α)
cos3α=4cosα·cos(π/3+α)cos(π/3-α)
tan3a=tana·tan(π/3+a)·tan(π/3-a)
三倍角公式推导
sin3a=sin(2a+a)=sin2acosa+cos2asina
三角函数辅助角公式
Asinα+Bcosα=(A2+B2)’(1/2)sin(α+t),其中
sint=B/(A2+B2)’(1/2)
cost=A/(A2+B2)’(1/2)
Asinα+Bcosα=(A2+B2)’(1/2)cos(α-t),tant=A/B
降幂公式
sin2(α)=(1-cos(2α))/2=versin(2α)/2
cos2(α)=(1+cos(2α))/2=covers(2α)/2
tan2(α)=(1-cos(2α))/(1+cos(2α))
三角函数推导公式
tanα+cotα=2/sin2α
1+cos2α=2cos2α
1-cos2α=2sin2α
1+sinα=(sinα/2+cosα/2)2=2sina(1-sin2a)+(1-2sin2a)sina=3sina-4sin3a
cos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos2a-1)cosa-2(1-sin2a)cosa=4cos3a-3cosa
sin3a=3sina-4sin3a=4sina(3/4-sin2a)=4sina[(√3/2)2-sin2a]=4sina(sin260°-sin2a)=4sina(sin60°+sina)(sin60°-sina)=4sina2sin[(60+a)/2]cos[(60°-a)/2]2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)
cos3a=4cos3a-3cosa=4cosa(cos2a-3/4)=4cosa[cos2a-(√3/2)2]=4cosa(cos2a-cos230°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa2cos[(a+30°)/2]cos[(a-30°)/2]{-2sin[(a+30°)/2]sin[(a-30°)/2]}=-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)
上述两式相比可得
tan3a=tanatan(60°-a)tan(60°+a)
三角函数半角公式
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);
cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.
sin2(a/2)=(1-cos(a))/2
cos2(a/2)=(1+cos(a))/2
tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
三角函数三角和
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
三角函数两角和
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
三角函数和化积
sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]
sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]
cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]
cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]
tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)
三角函数积化和
sinαsinβ=[cos(α-β)-cos(α+β)]/2
cosαcosβ=[cos(α+β)+cos(α-β)]/2
sinαcosβ=[sin(α+β)+sin(α-β)]/2
cosαsinβ=[sin(α+β)-sin(α-β)]/2
三角函数诱导公式
sin(-α)=-sinα
cos(-α)=cosα
tan(—a)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
sin(π-α)=sinα
cos(π-α)=-cosα
sin(π+α)=-sinα
cos(π+α)=-cosα
tanA=sinA/cosA
tan(π/2+α)=-cotα
tan(π/2-α)=cotα
tan(π-α)=-tanα
tan(π+α)=tanα
公式
sinα=2tan(α/2)/[1+tan’(α/2)]
cosα=[1-tan’(α/2)]/1+tan’(α/2)]
tanα=2tan(α/2)/[1-tan’(α/2)]
其它公式
(1)(sinα)2+(cosα)2=1
(2)1+(tanα)2=(secα)2
(3)1+(cotα)23、选做题=(cscα)2
证明下面两式,只需将一式,左右同除(sinα)2,第二个除(cosα)2即可
(4)对于任意非直角三角形,总有
tanA+tanB+tanC=tanAtanBtanC
证:A+B=π-Ctan(A+B)=tan(π-C)
(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)
整理可得tanA+tanB+tanC=tanAtanBtanC
得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立
由tanA+tanB+tanC=tanAtanBtanC可得出以下结论
(5)cotAcotB+cotAcotC+cotBcotC=1
(7)(cosA)2+(cosB)2+(cosC)2=1-2cosAcosBcosC
(8)(sinA)2+(sinB)2+(sinC)2=2+2cosAcosBcosC
(9)sinα+sin(α+2π/n)+sin(α+2π2/n)+sin(α+2π3/n)+……+sin[α+2π(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π2/n)+cos(α+2π3/n)+……+cos[α+2π(n-1)/n]=0以及
sin2(α)+sin2(α-2π/3)+sin2(α+2π/3)=3/2
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
拓展资料:学好高中数学的方法
一、先看笔记后做作业
老师一讲就懂了,自己动手做题就不会了,这是很多人都存在的问题。有一种奇怪的现象就是,老师总是会无形中把学生的水平和自己作对比,他认为大家都懂了,实际上很多人都不懂。所以在课后习题中,大部分同学还是一脸懵,不知所措。
课后做题之前记得复习,所谓的复习就是再看一遍课本,复习一遍笔记。只有这样才能心中有数,不然做题基本都是稀里糊涂,浪费了时间,成绩也得不到提升。在课后作业中,尽量把课本吃透,不要盲目的去做课外题,不然会导致悬空,无法落地,考试成绩必然一塌糊涂!
平时的学习,毕竟没有高考压力那么大,所以,在平时的演练中,一定要学会一个好的学习方法和解题思路。要善于总结,毕竟刚上高一,还是需要知识和方法的积累,如果坚持做下去,在高三的时候成绩必然会突飞猛进,考上一所好大学还是不成问题的。
二、复习和总结
学习方式已经和以前不一样了,以前被动学习比较多,老师都给你做好了,你只要等着记忆就可以了,但是高中却是主动学习的时期,所以,不管老师怎么讲,下去自己都要复习,总结自己的学习方法,这才是学习的境界。
每个人都会犯错,但是犯错能够改错也是勇敢的,是难能可贵的,可怕的就是一些人总是犯错,而且是犯同样的错误,这样的就不能原谅了。
三、错题重现
错题也是经常有的,不管是单元测试,还是月末考试,只要是出现错题,就记得去整理,因为所有的错误都整理起来,就可以集中解决了,而且在期末的时候可以拿出来多复习几次,尤其是高考的时候,这些错题就是宝贝。
四、阅读
很多人对此不理解,数学和阅读有什么关系呢,其实不然,数学主要就是审题,如果语文的阅读理解能力不行,你是如何审题的,你根本不懂什么意思,所以,阅读是和理科有直接关系的。
阅读可以让你增加知识,也可以让你增加阅历,当然最直接的还是可以让你其他科成绩也有所提高,所以,课外阅读显得格外重要。虽然是阅读,但是也要读经典图书,而不是随便找几本网络去读,没有营养的书籍还是不要浪费时间。
五、合理的学习
06高考卷3数学三角函数 高手进来
高中数学三角函数教案:三角函数的诱导公式 1教学目标Y=1/2sin4x
最小正周期是1/2π
既然大家都说是1/2,那好就可以提前成功了一半,很多人学习都是盲目的,要想学习进步快,还是需要有详细的学习,而且这个是要合理的,适合自己的,而不是随便找一个人的学习就去执行,大家的情况不同,要根据自己的实际情况去指定可行性的方案。而且要坚决去执行,这样才能取得。大概就是吧
派/2
最小正周期为2派/4 = 1/2派
高考数学题三角函数值?
让学生回想后再点名回答,投影显示规范的定义,教师根据回答情况进行修正、强调:参有问题,
若sin(A+π/4)=开门见山,面对全体学生提问:1时,
A+π/4=π/2,
A=π/4,
∴B=π/4
∴A=B
∴a=b,与已知a>b矛盾,
所以不能取等号。
高考数学三角函数的求值整理
②公式中a的适用范围并不是仅仅适用于锐角,只是在求解时我们往往需要转化为锐角来完成;三角函数专题的内容主要包括三角函数的图象与性质、平面向量、简单的三角恒等变换、解三角形。高考在该部分一般有两个试题。一个试题是,如果在解答题部分没有涉及到正、余弦定理的考查,会有一个与正余弦定理有关的题目,如果在解答题中涉及到了正、余弦定理,可能是一个和解答题相互补充的三角函数图象、性质、恒等变换的题目;一个试题是以考查平面向量为主的试题。
命题方式
平面向量主要命题方向有两个:
(1)以平面向量基本定理、共线向量定理为主
(2)以数量积的运算为主;
三角函数解答题的主要命题方向有三个:
(1)以三角函数的图象和性质为主体的解答题,往往和平面向量相结合;
(2)以三角形中的三角恒等变换为主题,综合考查三角函数的性质等;
(3)以实际应用题的形式考查正余弦定理、三角函数知识的实际应用.
考点解sin600°,sin(-30°)析
该专题的主要考点是:三角函数的概念和性质(单调性,周期性,奇偶性,最值),三角函数的图象,三角恒等变换(主要是求值),三角函数模型的应用,正余弦定理及其应用,平面向量的基本问题及其应用。
高中数学三角函数教案
诱导公式记背诀窍:奇变偶不变,符号看象限三角函数内容在高中数学课程中占有重要的地位,它是描述现实世界周期现象的重要模型,又是高中教材中基本初等函数的其中之一。下面我为你整理了高中数学三角函数教案,希望对你有帮助。
高中数学三角函数教案:任意角的三角函数 一、 教学目标
1.掌握任意角的正弦、余弦、正切函数的定义(包括定义域、正负符号判断);了解任意角的余切、正割、余割函数的定义.
2.经历从锐角三角函数定义过度到任意角三角函数定义的推广过程,体验三角函数概念的产生、发展过程. 领悟直角坐标系的工具功能,丰富数形结合的经验.
3.培养学生通过现象看本质的唯物主义认识论观点,渗透事物相互联系、相互转化的辩证唯物主义世界观.
4.培养学生求真务实、实事求是的科学态度.
二、 重点、难点、关键
重点:任意角的正弦、余弦、正切函数的定义、定义域、(正负)符号判断法.
难点:把三角函数理解为以实数为自变量的函数.
关键:如何想到建立直角坐标系;六个比值的确定性( α确定,比值也随之确定)与依赖性(比值随着α的变化而变化).
三、 教学理念和方法
教学中注意用新课程理念处理传统教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、者、合作者的作用,学生主体参与、揭示本质、经历过程.
根据本节课内容、高一学生认知特点和我自己的教学风格,本节课采用“启发探索、讲练结合”的方法组织教学.
四、 教学过程
[执教线索:
回想再认:函数的概念、锐角三角函数定义(锐角三角形边角关系)——问题情境:能推广到任意角吗?——它山之石:建立直角坐标系(为何?)——优化认知:用直角坐标系研究锐角三角函数——探索发展:对任意角研究六个比值(与角之间的关系:确定性、依赖性,满足函数定义吗?)——自主定义:任意角三角函数定义——登高望远:三角函数的要素分析(对应法则、定义域、值域与正负符号判定)——例题与练习——回顾小结——布置作业]
(一)复习引入、回想再认
在初中我们初步学习了锐角三角函数,前几节课,我们把锐角推广到了任意角,学习了角度制和弧度制,这节课该研究什么呢?
探索任意角的三角函数(板书课题),请同学们回想,再明确一下:
(情景1)什么叫函数?或者说函数是怎样定义的?
传统定义:设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值和它对应,那么就说y是x的函数,x叫做自变量,自变量x的取值范围叫做函数的定义域.
1.知识与技能
(1)能够借助三角函数的定义及单位圆中的三角函数线推导三角函数的诱导公式。
(2)能够运用诱导公式,把任意角的三角函数的化简、求值问题转化为锐角三角函数的化简、求值问题。
2.过程与方法
(1)经历由几何直观探讨数量关系式倍角公式的过程,培养学生数学发现能力和概括能力。
(2)通过对诱导公式的探求和运用,培养化归能力,提高学生分析问题和解决问题的能力。
3.情感、态度、价值观
(1)通过对视频中的导学,培养学生自学能力,更大发挥学生自主能动性。
(2)在诱导公式的探求过程中,运用合作学习的方式进行,培养学生探索能力、钻研精神。
2重点和难点
教学重点:探求π-a的诱导公式。π+a与-a的诱导公式在小结π-a的诱导公式发现过程的基础上,教师学生推出。
教学难点:π+a,-a与角a终边位置的几何关系,发现由终边位置关系导致(与单位圆交点)的坐标关系,运用任意角三角函数的定义导出诱导公式的“研究路线图”。
3教学手段和方法
视频导学、问题教学法、合作学习法,结合多媒体课件
4教学过程 4.1 学时 教学活动 活动1【导入】课题引入
角的概念已经由锐角扩充到了任意角,因而由初中定义的锐角三角函数引入到任意角的三角函数的定义方法,让学生明白今天这堂课的思维结构就是:由将任意角的三角函数问题转化为研究点的坐标的问题,而点的坐标又由终边位置所决定,从而让学生导出诱导公式的“研究路线图”创造条件。
回顾公式一,强调其作用是将任意角三角函数求值问题转化为0°~360°角三角函数求值问题,从而确定整堂课的研究范围就是0°~360°角的三角函数相关问题。
sin390°,sin480°
活动2【活动】公式四的推导
利用上述引入,讨论a和π- a,π+a,2π- a的终边关系。
先根据视频中内容再次讲解a和π- a的终边关系,提问:与角a终边关于原点对称,和y轴对称的角如何表示。(相互沟通,由组长收集组员问题)
解答相关疑问,并利用对媒体展示对称关系。
针对视频中公式二的推导,(再次播放片段,并且在ppt上展示图表)询问同学自学情况并由组长组织同学推导公式二,公式三。
活动3【活动】针对公式二和公式三让学生参与自我讨论
让学生自己进行证明,利用图表,由组长进行指导,使小组达成共识,将问题集中反映(在学生讨论的同时在黑板上画出表格)(5分钟)
点名组长,汇报讨论情况,并且展示讨论结果
利用ppt展示诱导公式的,并且强调研究三角函数诱导公式的路线图:角间关系→对称关系→坐标关系→三角函数值间关系。
准备补充讲解的是:
①对于2π- a和-a的三角函数的理解;
③从终边对称的角度引申诱导公式的作用。
例1、利用公式求下列三角函数值
(课本例题略)
同学之间互相讨论,共同完成(5分钟)有组长回报学习情况。
针对回顾视频中求解sin330°告诉学生公式在使用的时候是比较灵活的,其实本没有什么具体的先后次序,而我们可以用划归的思想总结出一个通用的步骤。
活动5【讲授】小结
开放式小结
知识上,学会了四组诱导公式;思想方法层面:诱导公式体现了由未知转化为已知的化归思想;诱导公式所揭示的是终边具有某种对称关系的两个角三角函数之间的关系。主要体现了化归和数形结合的数学思想。
回顾一下,你的组员中有哪些同学你认为表现比较好,哪些需要多加努力?他们主要是哪里需要课后进行改进的?(5分钟)
活动6【作业】分层作业
1、阅读课本,体会三角函数诱导公式推导过程中的思想方法;
2、必做题 课本23页 13
(1)你能由公式二、三、四中的任意两组公式推导到另外一组公式吗?
(2)角α和角β的终边还有哪些特殊的位置关系,你能探究出它们的三角函数值之间的关系吗?
1.3三角函数的诱导公式
课时设计 课堂实录
1.3三角函数的诱导公式
1学时 教学活动 活动1【导入】课题引入
角的概念已经由锐角扩充到了任意角,因而由初中定义的锐角三角函数引入到任意角的三角函数的定义方法,让学生明白今天这堂课的思维结构就是:由将任意角的三角函数问题转化为研究点的坐标的问题,而点的坐标又由终边位置所决定,从而让学生导出诱导公式的“研究路线图”创造条件。
回顾公式一,强调其作用是将任意角三角函数求值问题转化为0°~360°角三角函数求值问题,从而确定整堂课的研究范围就是0°~360°角的三角函数相关问题。
sin390°,sin480°
活动2【活动】公式四的推导
利用上述引入,讨论a和π- a,π+a,2π- a的终边关系。
先根据视频中内容再次讲解a和π- a的终边关系,提问:与角a终边关于原点对称,和y轴对称的角如何表示。(相互沟通,由组长收集组员问题)
解答相关疑问,并利用对媒体展示对称关系。
针对视频中公式二的推导,(再次播放片段,并且在ppt上展示图表)询问同学自学情况并由组长组织同学推导公式二,公式三。
活动3【活动】针对公式二和公式三让学生参与自我讨论
让学生自己进行证明,利用图表,由组长进行指导,使小组达成共识,将问题集中反映(在学生讨论的同时在黑板上画出表格)(5分钟)
点名组长,汇报讨论情况,并且展示讨论结果
利用ppt展示诱导公式的,并且强调研究三角函数诱导公式的路线图:角间关系→对称关系→坐标关系→三角函数值间关系。
准备补充讲解的是:
①对于2π- a和-a的三角函数的理解;
③从终边对称的角度引申诱导公式的作用。
例1、利用公式求下列三角函数值
(课本例题略)
同学之间互相讨论,共同完成(5分钟)有组长回报学习情况。
针对回顾视频中求解sin330°告诉学生公式在使用的时候是比较灵活的,其实本没有什么具体的先后次序,而我们可以用划归的思想总结出一个通用的步骤。
活动5【讲授】小结
开放式小结
知识上,学会了四组诱导公式;思想方法层面:诱导公式体现了由未知转化为已知的化归思想;诱导公式所揭示的是终边具有某种对称关系的两个角三角函数之间的关系。主要体现了化归和数形结合的数学思想。
回顾一下,你的组员中有哪些同学你认为表现比较好,哪些需要多加努力?他们主要是哪里需要课后进行改进的?(5分钟)
活动6【作业】分层作业
1、阅读课本,体会三角函数诱导公式推导过程中的思想方法;
2、必做题 课本23页 13
(1)你能由公式二、三、四中的任意两组公式推导到另外一组公式吗?
(2)角α和角β的终边还有哪些特殊的位置关系,你能探究出它们的三角函数值之间的关系吗?
高中数学三角函数教案:三角函数的图像与性质 一、教学内容分析
本主题单元共分3部分,部分复习三角公式,第二部分复习三角函数图象与性质,第三部分复习正余弦定理,本节课是第二部分“收官”课,期待学生在知识和能力上得到螺旋上升的发展.因此,本节课的重点是三角函数的图象和性质的完美结合与灵活运用.难点则体现在知识转化和变通过程中,学生综合运用知识解决问题能力的提升上.
二、命题走向
近几年高考降低了对三角变换的考查要求,而加强了对三角函数的图象与性质的考查,因为函数的性质是研究函数的一个重要内容,是学习高等数学和应用技术学科的基础,又是解决生产实际问题的工具,因此三角函数的性质是本单元复习的重点.在复习时要充分运用数形结合的思想,把图象与性质结合起来,利用图象的直观性得出函数的性质,同时也要能利用函数的性质来描绘函数的图象,这样既有利于掌握函数的图象与性质,又能熟练地运用数形结合的思想方法.
三、设计理念与思想
翻转课堂的核心理念是使“知识传递发生在课外,知识内化发生在课堂”.所以我们需要重新建构学习流程, “信息传递”是学生在课前进行的,老师不仅提供了视频,还可以提供在线的辅导;“吸收内化”是在课堂上通过互动来完成的,教师能够提前了解学生的学习困难,在课堂上给予有效的辅导,同学之间的相互交流更有助于促进学生知识的吸收内化过程.与传统理念相比,课堂和老师的角色都发生了变化.老师更多的是理解学生的问题和学生运用知识,发挥组织者、者、合作者的作用,学生主体参与、揭示本质、经历过程.
四、学生学习情况分析
青岛2中分校近年来录取分数线有了明显提高,在孙先亮“办学生发展需要的学校”,“每个学生都是好学生”等先进教育理念的下,学生的综合能力得到不断提升.本届学生是2中分校成立以来即将毕业的第二届,高三.2班是本人高二分班后新接任的班级,班级整体水平提升较快.
五、教学目标
1. 通过课前视频,自主梳理正弦、余弦、正切函数的图象和性质.
2. 能灵活运用三角函数的图象与性质设计并解决问题, 进一步领会数形结合的思想,提高学生思维的变通性.
六、教学过程
课前视频:
1.播放吕良和刘雨佳同学创作的《三角函数——小苹果版》,复习三角函数的图象与基本性质
[设计意图]用熟悉的流行歌曲调动学生的学习积极性
函数y=sin xy=cos xy=tan x
一个周期内的图象
定义域
值域
奇偶性
周期性
对称性对称中心:
对称轴:对称中心:
对称轴:对称中心:
对称轴:
单调性在___________________上增,在____________________上减在___________________上增,在___________________上减_____________________上是增函数最值x=___________________时,y取值1;x=___________________时,y取最小值-1.x=___________________时,y取值1;x=___________________时,y取最小值-1.
[设计意图]通过表格的形式使学生自主巩固三个基本初等函数的基本知识,为课堂小讲师搭建表现平台,也为本节课的目标2的达成奠定坚实的基础.
(3)函数 的对称中心是 .
(4)将函数 的图象向左平移 个单位,再将所得图象上各点的横坐标缩短为原来的 倍,纵坐标不变,得到函数 的图象,则函数单调增区间是 .
高三数学三角函数
补充练习:sin(-240°)(3分钟)因为cosxcosy+sinxsiny=1/2所以cos(x-y)=1/2
再和化积sin2x+sin2y=2sin(x+y)cos(x-y)=2/3
所以sin(x+随后解决视频中的问题:(讨论3分钟,随机点名反馈学情)y)=2/3
高三数学 三角函数 在线等
tant=B/A解:由公式a/b=sinA/sinB可知,a=bsinA/sinB。根据已知条件a=2bsinA,可得:sinB=1/2。因为,三角形为锐角三角形,所以B=30°。
利用多媒体演示视频中用“对称”的方法来求解三角函数值,并推出0°~360°的特殊角的三角函数值表。(2)根据已知条件a=2bsinA,可得a:2b=sinA。因为B=30°,且三角形为锐角三角形,所以A的取值范围是(60°,90°)。那么sinA的取值就是(sin60°,sin90°)。也就是,(根号3/2, 1)。
高三数学,三角函数。
y=1/2sin4x1.2sinAcosC=sinB=sin(A+C)=sinAcosC+sinBcosA
2.【自主梳理】 三角函数的图象和性质移项整理得
sinBcosA-sinAcosC=0
即sin(B-A)=0
B-A=0 (不可能是180°吧)因此A=B
这是一个等腰三角形
所以2cosC=1 cosC=1/2 (sinA和sinB约掉了)
a/c=sinA/sinC=sinA/sin(A+B)=(sinA/2sinAcosA)=1/(2cosA)=1
(2). sin(2A+B)=sin(A+A+B)=sin(A+π-C)=sin[π-(C-A)]=sin(C-A)
sinB=sin(π-A-C)=sin[π-(A+C)]=sin(A+C)
∴sin(C-A)=3sin(A+C)
所以sinCcosA-cosCsinA=3sinAcosC+3cosAsinC
两边同时除以cosCcosA(A,C均不为90°,所以cosC,cosA均不等于0,他们的乘积也不等于0),
得 tanC-tanA=3tanA+3tanC
∴-2tanC=4tanA
tanA/tanC=-2/4=-1/2
将(1)中的sinAsinB运用正弦定理消去,,剩下2acosC=b,即2a/b=cosC,根据余弦定理cosC=(b2+a2-c2)/2ab,这样就剩下只关于abc的等式,再结合条件即可算出
高考数学:三角函数?
3. 通过思考和小讲师的分析,提高学生学习的主动性、参与度,提升合作探究的能力.这种题目,首先要把高次换成一次,可以利用倍角公式和半角公式,之后一般都可以化简了,化简后,公式基本都能用上
1+cos2x+8sin^x/sin2x=sin^2x+cos^2+cos^2-sin^2x+8sin^2x/2sinxcosx==2+8tan^2x/2tanx
本题思路是把多项转化为单项及把sin与cos转化(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)为tan
高三数学 三角函数
用正弦定理a/b=sinA/sinB.得到sinB=1/2.已知是锐角三角形,所以B=π/6.你先把向量m和n带到m·n=1+cos(B+C)中,再利用B+C=180°-A
m·n=sinB√3cosC+,√cosBsinC=1+cos(B+C)
cos(B三角函数是最简单的一部分。学会:降幂公式,二倍角转化,诱导公式就可以了。在简单题中:第17题(12分),选择填空可能出现1-2个。分别占分5分,4分,或者9分。+C)=sin【π-(B+C)】
拆出来我相信你可以算出那个的……
因为打字太麻烦了……太惨了。。。
arc cos(4/5)
高考数学题三角函数值?
参有问题,
若sin(A+π/4)=1时,
A+π/4=π/2,
A=π/4,
∴B=π/4
tanα-cotα=-2cot2α∴A=B
∴a=b,现代定义:设A、B是非空的数集,如果按某个确定的对应关系f,使对于A中的任意一个数,在B中都有确定的数 f(x)和它对应,那么就称映射?:A→B为从A到B的一个函数,记作:y= f(x),x∈A ,其中x叫自变量,自变量x的取值范围A叫做函数的定义域与已知a>b矛盾,
所以不能取等号。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 836084111@qq.com 举报,一经查实,本站将立刻删除。