数学高考各大题都多少分
变量的相关性 √扩展资料
高考数学极坐标方程 数学极坐标方程的高考题
高考数学极坐标方程 数学极坐标方程的高考题
高考数学极坐标方程 数学极坐标方程的高考题
超几何分布 √
高考数学常考的题型主要有函数与导数,平面向量与三角函数、三角变换及其应用,数列及其应用,不等式,概率和统计,空间位置关系的定性与定量分析,解析几何等。
高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。正确理解基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成技能,以不变应万变。
参考资料:
高考数学分值分布:
1、选择题60分(12道题,1道题5分)
这里的解答题就是你想问的大题。各个题没有固定的分值,但是总分在70分不变。因为每年难度不一,但是6道题,前5道题在9~12分之间,一题14分、或13分在这个区间。
对于文科数学,新课标 I 卷高频考点分析如下:
由柱形图可知,新课标 I 卷高考文科数学近六年高频考点为:
1. 函数与导数,立体几何,圆锥曲线,三角函数与解三角形,数列,年均占比14.45%,12.98%,10.13%,9.44%,6.78%;
2. 统计,概率,不等式与线性规划,年均占比4-6%;与简易逻辑、复数、算法与框图,年均考查约5分左右,即一道选/填分值;
3. 一道计算题为3选1,10分,可在圆、相似;参数方程、极坐标方程;解不等式、最值这三道大题中任选其一。
数 学(理 科),总之 英语方面要求大家增大对单词的记忆能力 以前只要记住意思 现在还要会写出来 很是麻烦高频考点
1. 圆锥曲线与方程,导数及其应用和概率与统计,三角函数与解三角形,数列,年均占比11.43%,9.36%,7.69%,6.34%;
2. 立体几何初步/空间向量与立体几何,占比合计12%左右,也需同学们着重注意;
3. 函数概念与基本初等函数Ⅰ/平面解析几何初步,推理与证明题,占比4%左右;其余知识点年均占分约为一道选/填题的分值5分;
其中,全国Ⅰ卷地区:河南、河北、山西、江西、湖北、湖南、广东、安徽、福建
选择题60分(12道题,1道题5分)
填空题20分(5道题,1道题4分)
解答题70分(6道题,前5道题在9~12分之间,一题14分、或13分)
选择题60分(12道题,1道题5分)
填空题20分(5道题,1道题4分)
解答题70分(6道题,前5道题在9~12分之间,一题14分、或13分)
一般有六大题17题10分,18题12分,19题12分,20题12分,21题12分,22题12分。
选择60、填空20、解答题70
2010年湖南高考数学要考极坐标与参数方程吗?
九、(B)直线、平面、简单何体(36课时,28个)1.平面及基本性质;2.平面图形直观图的画法;3.平面直线;4.直线和平面平行的判定与性质;5,直线和平面垂直的判与性质;6.三垂线定理及其逆定理;7.两个平面的位置关系;8.空间向量及其加法、减法与数乘;9.空间向量的坐标表示;10.空间向量的数量积;11.直线的方向向量;12.异面直线所成的角;13.异面直线的公垂线;14异面直线的距离;15.直线和平面垂直的性质;16.平面的法向量;17.点到平面的距离;18.直线和平面所成的角;19.向量在平面内的射影;20.平面与平面平行的性质;21.平行平面间的距离参数方程与普通方程的互化 √;22.二面角及其平面角;23.两个平面垂直的判定和性质;24.多面体;25.棱柱;26.棱锥;27.正多面体;28.球.湖南高考已经进入高考改革 很不幸的我们成为了届实验生。可以说有利也他弊
还有英语完形填空增加为2篇 篇单项15个小题 第2篇填写单词。5-8空
语文也做出了巨大的变化 增加了一篇小作文。(评论)15-20分
好象是替代了现代文阅读。也就说 作数学高考包括填空题、解答题和附加题(文科生没有附加题)。填空题共14个,每个5分,共60分;解答题共4题,前两题14分,后两题16分,共60分。江苏省高考方案属于“3+学业水平测试+综合素质评价”。文总分达到了60+20=80分。!!
高考数学大题都是哪几种题型啊?
标原点) √高考数学有六道大题
分别是三角函数、概率、立体几何、数列、对数学基础知识和基本技能的考查,贴近教学实际,既注意全面,又突出重点,注重知识内在联系的考查,注重对中学数学中所蕴涵的数学思想方法的考查。圆锥曲线、函数
其中前四道题一般都比较容易,难题一般处在圆锥曲线和函数题上
高考大题题型内容(全国新课标卷):
17,数列或三角函数(包括解三角形)
18,空间几何
19,统计概率
20,解析几何(4. 一道计算题为3选1,共10分,可在几何证明题、坐标系与参数方程、不等式这三道大题中任选其一。文),导数(理)
21,导数(文),解析几何(理)
三选一:
22,几何证明,23,极坐标与参数方程,24不等式选讲
各地不完全相同,一般有三角函数、期望方、立体几何、解析几何、导数(函数)。前面三题比较容易。
一、选择题
二、填空题
三、解答题:解答题应答时,考生不仅要提供出的结论,还得写出或说出解答过程的主要步骤,提供合理、合法的说明
高中数学知识点总结归纳
(4) , 学习 ;翻折:①y=|f(x)|是将y=f(x)位于x轴下方的部分以x轴为对称轴将期翻折到x轴上方的图像。②y=f(|x|)是将y=f(x)位于y轴左方的图像翻折到y轴的右方而成的图像。如果把数学比作一把锁的话,那思考就是一把开锁的金钥匙,为你打开这数学之锁。下面就是我为大家精心整理的高中数学知识点 总结 ,希望对你们有所帮助!
高中数学知识点总结归纳
1、含n个元素的有限其子集共有2n个,非空子集有2n—1个,非空真子集有2n—2个。
2、中,Cu(A∩B)=(CuA)U(CuB),交之补等于补之并。
Cu(AUB)=(CuA)∩(CuB),并之补等于补之交。
3、ax2+bx+c<0的解集为x(0
+c>0的解集为x,cx2+bx+a>0的解集为>x或x<;ax2—bx+
4、c<0的解集为x,cx2—bx+a>0的解集为->x或x<-。
5、原命题与其逆否命题是等价命题。
原命题的逆命题与原命题的否命题也是等价命题。
6、函数是一种特殊的映射,函数与映射都可用:f:A→B表示。
A表示原像,B表示像。当f:A→B表示函数时,A表示定义域,B大于或等于其值域范围。只有一一映射的函数才具有反函数。
7、选 修原函数与反函数的单调性一致,且都为奇函数。
偶函数和周期函数没有反函数。若f(x)与g(x)关于点(a,b)对称,则g(x)=2b-f(2a-x).
8、若f(-x)=f(x),则f(x)为偶函数,若f(-x)=f(x),则f(x)为奇函数;
偶函数关于y轴对称,且对称轴两边的单调性相反;奇函数关于原点对称,且在整个定义域上的单调性一致。反之亦然。若奇函数在x=0处有意义,则f(0)=0。函数的单调性可用定义法和导数法求出。偶函数的导函数是奇函数,奇函数的导函数是偶函数。对于任意常数T(T≠0),在定义域范围内,都有f(x+T)=f(x),则称f(x)是周期为T的周期函数,且f(x+kT)=f(x),k≠0.
9、周期函数的特征性:①f(x+a)=-f(x),是T=2a的函数,②若f(x+a)+f(x+b)=0,即f(x+a)=-f(x+b),T=2(b-a)的函数,③若f(x)既x=a关对称,又关于x=b对称,则f(x)是T=2(b-a)的函数④若f(x
+a)?f(x+b)=±1,即f(x+a)=±,则f(x)是T=2(b-a)的函数⑤f(x+a)=±,则f(x)
是T=4(b-a)的函数
10、复合函数的单调性满足“同增异减”原理。
定义域都是指函数中自变量的取值范围。
11、抽象函数主要有f(xy)=f(x)+f(y)(对数型),f(x+y)=f(x)?f(y)(指数型),f(x+y)=f(x)+f(y)(直线型)。
解此类抽象函数比较实用的 方法 是特殊值法和周期法。
12、指数函数图像的规律是:底数按逆时针增大。
对数函数与之相反.
13、ar?as=ar+s,ar÷as=ar—s,(ar)s=ars,(ab)r=arbr。
在解可化为a2x+Bax+C=0或a2x+Bax+C≥0(≤0)的指数方程或不等式时,常借助于换元法,应特别注意换元后新变元的取值范围。
14、log10N=lgN;logeN=lnN(e=2.718???);对数的性质:如果a>0,a≠0,M>0N>0,
那么loga(MN)=logaM+logaN,;loga()=logaM—logaN;logaMn=nlogaM;alogaN=N.
换底公式:logaN=;logamlogbnlogck=logbmlogcnlogak=logcmloganlogbk.
15、函数图像的变换:
(1)水平平移:y=f(x±a)(a>0)的图像可由y=f(x)向左或向右平移a个单位得到;
(2)竖直平移:y=f(x)±b(b>0)图像,可由y=f(x)向上或向下平移b个单位得到;
(3)对称:若对于定义域内的一切x均有f(x+m)=f(x—m),则y=f(x)的图像关于直线x=m对称;y=f(x)关于(a,b)对称的函数为y!=2b—f(2a—x).
(5)有关结论:①若f(a+x)=f(b—x),在x为一切实数上成立,则y=f(x)的图像关于
x=对称。②函数y=f(a+x)与函数y=f(b—x)的图像有关于直线x=对称。
15、等数列中,an=a1+(n—1)d=am+(n—m)d;sn=n=na1+
16、若n+m=p+q,则am+an=ap+aq;
sk,s2k—k,s3k—2k成以k2d为公的等数列。an是等数列,若ap=q,aq=p,则ap+q=0;若sp=q,sq=p,则sp+q=—(p+q);若已知sk,sn,sn—k,sn=(sk+sn+sn—k)/2k;若an是等数列,则可设前n项和为sn=an2+bn(注:没有常数项),用方程的思想求解a,b。在等数列中,若将其脚码成等数列的项取出组成数列,则新的数列仍旧是等数列。
17、等比数列中,an=a1?qn-1=am?qn-m,若n+m=p+q,则am?an=ap?aq;sn=na1(q=1),
sn=,(q≠1);若q≠1,则有=q,若q≠—1,=q;
=—,=?(—),常用数列递推形式:叠加,叠乘,
18、弧长公式:l=|α|?r。
s扇=?lr=?|α|r2=?;当一个扇形的周长一定时(为L时),
其面积为,其圆心角为2弧度。
19、Sina(α+β)=sinαcosβ+cosαsinβ;Sina(α—β)=sinαcosβ—cosαsinβ;
Cos(α+β)=cosαcosβ—sinαsinβ;cos(α—β)=cosαcosβ+sinαsinβ
高考数学必考知识点
1.【数列】&【解三角形】
数列与解三角形的知识点在解答题的题中,是非此即彼的状态,近些年的特征是大题题两年数列两年解三角形轮流来, 2014、2015年大题题考★ 高中高一数学知识点总结查的是数列,2016年大题题考查的是解三角形,故预计2017年大题题较大可能仍然考查解三角形。
数列主要考察数列的定义,等数列、等比数列的性质,数列的通项公式及数列的求和。
解三角形在解答题中主要考查正、余弦定理在解三角形中的应用。
2.【立体几何】
高考在解答题的第二或第三题位置考查一道立体几何题,主要考查空间线面平行、垂直的证明,求二面角等,出题比较稳定,第二问需合理建立空间直角坐标系,并正确计算。
3.【概率】
高考在解答题的第二或第三题位置考查一道概率题,主要考查古典概型,几何概型,二项分布,超几何分布,回归分析与统计,近年来概率题每年考查的角度都不一样,并且题干长,是学生感到困难的一题,需正确理解题意。
4.【解析几何】
高考在第20题的位置考查一道解析几何题。主要考查圆锥曲线的定义和性质,轨迹方程问题、含参问题、定点定值问题、取值范围问题,通过点的坐标运算解决问题。
5.【导数】
高考在第21题的位置考查一道导数题。主要考查含参数的函数的切线、单调性、最值、零点、不等式证明等问题,并且含参问题一般较难,处于必做题的一题。
6.【选做题】
今年高考几何证明选讲已经删除,选考题只剩两道,一道是坐标系与参数方程问题,另一道是不等式选讲问题。坐标系与参数方程题主要考查曲线的极坐标方程、参数方程、直线参数方程的几何意义的应用以及范围的最值问题;不等式选讲题主要考查不等式的化简,求参数的范围及不等式的证明。
高中数学知识点总结
一、、简易逻辑(14课时,8个)1.;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件.
二、函数(30课时,12个)1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例.
三、数列(12课时,5个)1.数列;2.等数列及其通项公式;3.等数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式.
四、三角函数(46课时17个)1.角的概念的推广;2.弧度制;3.任意角的三角函数;4,单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式’7.两角和与的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16余弦定理;17斜三角形解法举例.
五、平面向量(12课时,8个)1.向量2.向量的加法与减法3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移.
六、不等式(22课时,5个)1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含的不等式.
七、直线和圆的方程(22课时,12个)1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题.9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程.
八、圆锥曲线(18课时,7个)1椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程;7.抛物线的简单几何性质.
十、排列、组合、二项式定理(18课时,8个)1.分类计数原理与分步计数原理.2.排列;3.排列数公式’4.组合;5.组合数公式;6.组合数的两个性质;7.二项式定理;8.二项展开式的性质.
十一、概率(12课时,5个)1.随机的概率;2.等可能的概率;3.互斥有一个发生的概率;4.相互同时发生的概率;5.重复试验.选修Ⅱ(24个)
十二、概率与统计(14课时,6个)1.离散型随机变量的分布列;2.离散型随机变量的期望值和方;3.抽样方法;4.总体分布的估计;5.正态分布;6.线性回归.
十三、极限(12课时,6个)1.数学归纳法;2.数学归纳法应用举例;3.数列的极限;4.函数的极限;5.极限的四则运算;6.函数的连续性.
十四、导数(18课时,8个)1.导数的概念;2.导数的几何意义;3.几种常见函数的导数;4.两个函数的和、、积、商的导数;5.复合函数的导数;6.基本导数公式;7.利用导数研究函数的单调性和极值;8函数的值和最小值.
十五、复数(4课时,4个)1.复数的概念;2.复数的加法和减法;3.复数的乘法和除法补充高中数学有130个知识点,从前一份试卷要考查90个知识点,覆盖率达70%左右,而且把这一项作为衡量试卷成功与否的标准之一.这一传统近年被打破,取而代之的是关注思维,突出能力,重视思想方法和思维能力的考查.现在的我们学数学比前人幸福啊!!相信对你的学习会有帮助的,祝你成功!补充一试全国高中数x的一试竞赛大纲,完全按照全日制中学《数学教学大纲》中所规定的教学要求和内容,即高考所规定的知识范围和方法,在方法的要求上略有提高,其中概率和微积分初步不考。二试1、平面几何基本要求:掌握初中数学竞赛大纲所确定的所有内容。补充要求:面积和面积方法。几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。几个重要的极值:到三角形三顶点距离之和最小的点--费马点。到三角形三顶点距离的平方和最小的点,重心。三角形内到三边距离之积的点,重心。几何不等式。简单的等周问题。了解下述定理:在周长一定的n边形的中,正n边形的面积。在周长一定的简单闭曲线的中,圆的面积。在面积一定的n边形的中,正n边形的周长最小。在面积一定的简单闭曲线的中,圆的周长最小。几何中的运动:反射、平移、旋转。复数方法、向量方法。平面凸集、凸包及应用。补充第二数学归纳法。递归,一阶、二阶递归,特征方程法。函数迭代,求n次迭代,简单的函数方程。n个变元的平均不等式,柯西不等式,排序不等式及应用。复数的指数形式,欧拉公式,棣莫佛定理,单位根,单位根的应用。圆排列,有重复的排列与组合,简单的组合恒等式。一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。简单的初等数论问题,除初中大纲中所包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类,高斯函数,费马小定理,欧拉函数,孙子定理,格点及其性质。3、立体几何多面角,多面角的性质。三面角、直三面角的基本性质。正多面体,欧拉定理。体积证法。截面,会作截面、表面展开图。4、平面解析几何直线的法线式,直线的极坐标方程,直线束及其应用。二元一次不等式表示的区域。三角形的面积公式。圆锥曲线的切线和法线。圆的幂和根轴。
高中数学知识点总结归纳相关 文章 :
★ 高中数学知识点全总结最全版
★ 高中数学知识点归纳
★ 高考数学知识点总结整理
★ 高中数学考点整理归纳
★ 高中数学知识点全总结
★ 高中数学学习方法:知识点总结最全版
★ 高中数学全部知识点提纲整理
★ 高考数学知识点归纳总结
★ 高考数学知识点总结 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();
求09江苏高考数学大纲!
抽屉原理。 容斥原理。 极端原理。 的划分。 覆盖。 梅涅劳斯定理 托勒密定理 西姆松线的存在性及性质(西姆松定理)。 赛瓦定理及其逆定理。 上面是从网上抄来的,我才高三毕业,高中我对数学竞赛很感兴趣的,嘿嘿。如果是初赛或者什么的话,考的还是平常的内容,只是对知识层面要求比较高,普通题就和平常考试的难题难度不多。采纳一下吧2009年普通高等学校招生全国统一考试互斥及其发生的概率 √(江苏卷)数学考试说明
1.必做题部分一、命题指导思想
2009年普通高等学校招生全国统一考试数学科(江苏卷)命题将遵循考试中心颁发的《普通高等学校招生全国统一考试(数学科)大纲》精神,依据《普通高中数学课程标准(实验)》和江苏省《普通高中课程标准教学要求》,既考查中学数学的基础知识和方法,又考查考生进入高等学校继续学习所必须的基本能力。
1.突出数学基础知识、基本技能、基本思想方法的考查
2.重视数学基本能力和综合能力的考查
数学基本要包括空间想象、抽象概括、推理论证、运算求解、数据处理这几方面的能力。
(1)空间想象能力是对空间图形的观察、分析、抽象的能力。考查要求是:能够根据题设条件想象并作出正确的平面直观图形,能够根据平面直观图形想象出空间图形;能够正确地分析出图形中基本元素及其相互关系,并能够对空间图形进行分解和组合。
(2)抽象概括能力的考查要求是:能够通过对实例的探究发现研究对象的本质;能够从给定的信息材料中概括出一些结论,并用于解决问题或作出新的判断。
(3)推理论证能力的考查要求是:能够根据已知的事实和已经获得的正确的数学命题,运用归纳、类比和演绎进行推理,论证某一数学命题的真性。
(4)运算求解能力的考查要求是:能够根据法则、公式进行运算及变形;能够根据问题的条件寻找与设计合理、简捷的运算途径;能够根据要求对数据进行估计或近似计算。
(5)数据处理能力的考查要求是:能够运用基本的统计方法对数据进行整理、分析,以解决给定的实际问题。
数学综合能力的考查,主要体现为分析问题与解决问题能力的考查,要求能够综合地运用有关的知识与方法,解决较为困难的或综合性的问题。
3.注重数学的应用意识和创新意识的考查
数学的应用意识的考查,要求能够运用所学的数学知识、思想和方法,构造数学模型,将一些简单的实际问题转化为数学问题,并加以解决。
创新意识的考查,要求能够综合,灵活运用所学的数学知识和思想方法,创造性地解决问题。
二、考试内容及要求
对知识的考查要求依次分为了解、理解、掌握三个层次(在下表中分别用A、B、C表示)。
了解:要求对所列知识的含义有最基本的认识,并能解决相关的简单问题。
理解:要求对所列知识有较深刻的认识,并能解决有一定综合性的问题。
掌握:要求系统地掌握知识的内在联系,并能解决综合性较强的或较为困难的问题。
具体考查要求如下:
内 容 要 求
A B C
1. 及其表示 √
子集 √
交集、并集、补集 √
2.函数概念与基 本初等函数Ⅰ 函数的有关概念 √
函数的基本性质 √
指数与对数 √
指数函数的图象和性质 √
对数函数的图象和性质 √
幂函数 √
函数与方程 √
函数模型及其应用 √
3.基本初等函数Ⅱ (三角函数)、三角恒等变换 三角函数的有关概念 √
同角三角函数的基本关系式 √
正弦、余弦的诱导公式 √
正弦函数、余弦函数、正切函数的图象和性质 √
函数 的图象和性质 √
两角和()的正弦、余弦和正切 √
二倍角的正弦、余弦和正切 √
几个三角恒等式 √
4.解三角形 正弦定理、余弦定理及其应用 √
5.平面向量 平面向量的有关概念 √
平面向量的坐标表示 √
平面向量的的数量积 √
平面向量的平行与垂直 √
平面向量的应用 √
6.数列 数列的有关概念 √
等数列 √
等比数列 √
7.不等式 基本不等式 √
一元二次不等式 √
线性规划 √
8.复数 复数的有关概念 √
复数的四则运算 √
内 容 要 求
A B C
8.复数 复数的几何意义 √
9.导数及其应用 导数的概念 √
导数的几何意义 √
导数的运算 √
利用导数研究函数的单调性和极大(小)值 √
导数在实际问题中的应用 √
10.算法初步 算法的有关概念 √
流程图 √
基本算法语句 √
11.常用逻辑用语 命题的四种形式 √
必要条件、充分条件、充分必要条件 √
简单的逻辑联结词 √
全称量词与存在量词 √
12.推理与证明 合情推理与演绎推理 √
分析法和综合法 √
反证法 √
13.概率、统计 抽样方法 √
总体分布的估计 √
总体特征数的估计 √
随机与概率 √
古典概型 √
几何概型 √
统计案例 √
14.空间几何体 柱、锥、台、球及其简单组成体 √
三视图与直视图 √
柱、锥、台、球的表面积和体积 √
15.点、线、面之间的位置关系 平面及其基本性质 √
直线与平面平行、垂直的判定与性质 √
两平面平行、垂直的判定与性质 √
16.平面解析几何初步 直线的斜率和倾斜角 √
直线方程 √
直线的平行关系与垂直关系 √
两条直线的交点 √
两点间的距离、点到直线的距离 √
圆的标准方程和一般方程 √
内 容 要 求
A B C
16.平面解析几何初步 直线与圆、圆与圆的位置关系 √
空间直角坐标系 √
方程 椭圆的标准方程和几何性质(中心在坐标原点) √
双曲线的标准方程和几何性质(中心在坐标原点) √
抛物线的标准方程和几何性质(顶点在坐标原点) √
2.附加题部分
内 容 要 求
A B C
选修系列2
:不含选修系列1
中的
内容 1.圆锥曲线与方程 曲线与方程 √
抛物线的标准方程和几何性质(顶点在坐
2.空间向
量与立体几何 空间向量的有关概念 √
空间向量共线、共面的充分必要条件 √
空间向量的线性运算 √
空间向量的坐标表示 √
空间向量的数量积 √
空间向量的共线与垂直 √
直线的方向向量与平面的法向量 √
空间向量的应用 √
3.导数及其应用 简单的复合函数的导数 √
定积分 √
4.推理与证明 数学归纳法的原理 √
数学归纳法的简单应用 √
5.计数
原理
分类加法计数原理 √
分步乘法计数原理 √
排列与组合 √
二项式定理 √
6.概率
统计 离散型随机变量及其分布列 √
次重复试验的模型及二项分布 √
离散型随机变量的均值和方 √
内 容 要 求
A B C
系列
4中
的4
个专
题7.几何证
明选讲 相似三角形的判定和性质定理 √
射影定理 √
圆的切线的判定和性质定理 √
圆周角定理,弦切角定理 √
相交弦不定期理、割线定理、切割线定理 √
圆内接四边形的判定与性质定理 √
8.矩阵与变换 矩阵的有关概念 √
二阶矩阵与平面向量 √
常见的平面变换 √
矩阵的复合与矩阵的乘法 √
二阶逆矩阵 √
二阶矩阵的特征值和特征向量 √
二阶矩阵的简单应用 √
9.坐标系与参数方程 坐标系的有关概念 √
极坐标方程与直角坐标方程的互化 √
参数方程 √
直线、圆和椭圆的参数方程 √
参数方程的简单应用 √
10.不等式选讲 不等式的基本性质 √
含有的不等式的求解 √
不等式的证明(比较法、综合法、分析法) √
几个不等式 √
利用不等式求(小)值 √
数学归纳法与不等式 √
三、考试形式及试卷结构
(一)考试形式
(二)考试题型
1.必做题 必做题部分由填空题和解答题两种题型组成。其中填空题14小题,约占70分;解答题6题,约占90分。
2.附加题 附加题部分由解答题组成,共6题。其中,必做题2题,考查选修系列2(不含选修系列1)中的内容;选做题共4题,依次考查选修系列4中4-1、4-2、4-4、4-5这4个专题的内容,考生从中选2题作答。
填空题只要求直接写出结果,不必写出计算和推理过程;解答题应写出文字说明、证明过程或演算步骤。
(三)试题难易比例
必做题部分由容易题、中等题和难题组成。容易题、中等题和难题在试卷中的比例大致为4:4:2。
附加题部分由容易题、中等题和难题组成。容易题、中等题和难题在试卷中的比例大致为5:4:1。
高考没考好,要复读,重点攻数学!
数学学起来真的很爽,其实数学这一门东西,没有什么天赋好说的,没有天赋的人可以学好,有天赋的可以学的更好,这其中的敲门,我相信你也知道了,就是多做点练习,看多些例题,说真的,只要条件允许的话,自学是不成问题的,照样能学好的,对于一些难题来说,如果自己解答不出来也许会很不爽,但见到后就会有一种恍然大悟的感觉,真的是很奇妙啊,那时候就会想,如果自己也想的出来多好啊,有时候掌握一些大家不知道的定理,解起题来感觉总是很爽,因为那一瞬间觉得自己多掌握了一个定理,虽然并没有掌握,当那感觉就是这样就是很奇妙 数学就是很奇妙的,一旦成绩将下来就会很懊悔,毕竟我自己喜欢的是数学,却得不到成果是很可悲的,我也是一个酷爱数学的人,所以不要气馁学数学,数学真的是很奇妙的一个科目
加油,想当年我被数学折磨得可以,次模拟考,第二次就倒数。完全的不知道为什么,就是莫名其妙错很多。后来老师不管我,就跟我说,你是填空题错超过两个(一共14题),就没有希望上重点了。纠结。
后来高人说要多纠错,就弄了一个错题集,真的有效果。
后来高考虽不是很辉煌,但是,至少数学没有拖后腿。
要说的就是这些,祝你成功。
我现在大三了,学数学的经验就是要总结。要有很强的逻辑性,再就是高考分数还没出来现在做决定有点早。说不定你其他的科目考的好呢?
特别是英语要好好学,大学里是很重要的。每年的6月20和12月20左右是考的时间。现在在家没事可以背背单词做好准备。
至于你想复读你得好好考虑一下,每年形式也在变化。就想今年工作难找一样,你现在就做两手准备吧。分数下来后再决定是走还是留
最主要的是你对数学信心不足
打垮他,明年会更好!
要看你什么程度了,1年应该不多
数学做题抄数学悟数学,列个有条不紊,加油
要培养学习数学的兴趣
我也才高考完...都没有勇气去对...
今年数学确实很难 比去年的不晓得难到哪点去了
考完了只能说尽人事听天命了
我数学高中阶段这得看你是在什么地方参加高考了。江苏一般两题都是综合题双曲线与函数、平几等等结合,可结合东西太多了,看出题者程度。压轴题要么是抽象函数题要么是复杂数列。也考过几次150
在我看来,做题跟总结哪个都不能少
不然你就算做再多也不会举一反三还是做不来新题
而且 不要太在意老师
我们有个数学老师教的很撇 讲的难度有很低
完全不听都懂
但是我们都是在下面自己做,自己对,不懂的再去问其数学试卷由必做题与附加题两部分组成。选修测试历史的考生仅需对试题中的必做题部分作答;选修测试物理的考生需对试题中必做题和附加题这两部分作答。必做题部分考查的内容是高中必修内容和选修系列1的内容;附加题部分考查的内容是选修系列2(不含选修系列1)中的内容以及选修系列4中专题4-1《几何证明选讲》、4-2《矩阵与变换》、4-4《坐标系与参数方程》、4-5《不等式选讲》这4个专题的内容(考生只需选考其中两个专题)。他老师
数学这个东西 老师带一下 最主要还是靠自己
还有 考试之前不要太放松了 要一直练点题 不然在考场上没的手感的
希望我们两个都可以在其他科目爆发下
复读的闭卷、笔试,试题分必做题和附加题两部分。必做题部分满分为160分,考试时间120分钟;附加题部分满分为40分,考试时间30分钟。滋味确实不好受
高三文科数学常考题型归纳
17.圆锥曲线与文科 数学 会考哪些题型呢?什么题型是最常考的?高三文科生在复习时要着重复习哪些题型呢?下面和我一起来看看吧!
文科数学常考题型有哪些
圆/坐标系与参数方程/不等式
一般全国卷文科数学的第22至24题会考圆/坐标系与参数方程/不等式三道选做题。参数方程是大家选做最多的一道题,参数方程主要考查轨迹方程计算方法、三角换元求最值、极坐标方程和直角坐标方程转化等,这道题相对容易做。
函数
一般全国卷文科数学的第21题会考函数题。高考对三角函数知识主要考查三角函数及解三角形两部分知识。主要知识点有三角函数概念。恒等变形、同角关系等。三角函数还可以和向量知识结合在一起考,也可以和正弦定理、余弦定理结合起来一起考查。
解析几何
一般全国卷文科数学的第20题会考解析几何题。解析几何也不是难题,只要大家平时努力,这些题目都算是相对简单的。所以大家不要有畏难情绪,认为这是2道大题就觉得有多难,其实如果你认认真真去做了,这道题还是有希望做对的。退一步来说,即便是真的不会了,那也可以得一些步骤分,前一两问还是没问题的。
立体几何
一般全国卷文科数学的第19题会考立体几何题。例题几何也不难,但大家一定要敢于尝试,敢于动笔写,不要说没有做题思路就放弃这道题。只要你按照常规的方法做就可以,然后一步步分析下去,边分析边写步骤,结果自然就出来了。如果没思路可以尝试2种以上的方法做。
概简单图形的极坐标方程 √率
一般全国卷文科数学的第18题会考条件概率及相互 √概率题。概率题相对比较简单,也是必须得分的题,这道题主要频数分布表、频率分布直方图、回归方程的求法、概率计算、相关系数的计算等等。主要还是对作图和识图能力考查比较多。
三角函数/数列
一般全国卷文科数学的第17题会考三角函数或数列题。数列是最简单的题目,或许你觉得它难,但它能放在道大题的位置,就说明你不应该丢分。数列题可以多总结一些类型题,分析归类,找到其中规律,题做多了,自然就有思路了。
文科数学成绩怎么提高
文科数学的一大特色,就在于你可以通过有效的总结来代替无尽的习题。总结并不代表一味地抄公式抄概念,而应该用自己的语言和做题经验归纳出针对自身的解题技巧,这也就是我所谓的“翻译”。事实上,高三一年我花在总结上的工夫与做题相比有过之而无不及。
粗心大意是文科数学学习中难以绕过的一大障碍,然而粗心只是表象,追本溯源仍是不够熟练。心态的调整亦无需花费额外的精力。我所采取的措施是在临考一个月时找来近三年的 高考试题 ,在规定的时间内细做一遍,并将写在卷上,达到降低高考恐惧感,增强自信心的目的。
我:高考数学复习重点题型有哪些
“偷懒”的要任就在于减少复习的负荷量。数学学习的负荷是永无止境的题海。开学伊始,我便整理出一个大体的概念框架,突出重点和难点。这样在轮复习大家都埋头做题之时,我便早早地跳出了题海。省下时间只是手段,把精力花在研究“精题”上才是目的。经验表明,选做精题为短期内成绩攀升打下了坚实的基础。
文科数学高考重点是哪些??
sk,s2k—k,s3k—2k也是等比数列。a1+a2+a3,a2+a3+a4,a3+a4+a5也成等比数列。在等比数列中,若将其脚码成等数列的项取出组成数列,则新的数列仍旧是等比数列。裂项公式:文科数学高考重点是解析几何、三角函数、数列、圆、坐标系与参数方程、不等式、概率。
怀疑自己的智商有问题。但是就是一点一点的算啊。算到自己想吐。看到别人轻轻松松弄出也会难过。参数方程主要考查轨迹方程计算方法、三角换元求最值、极坐标方程和直角坐标方程转化等。概率题相对比较简单,也是必须得分的题,这道题主要频数分布表、频率分布直方图、回归方程的求法、概率计算、相关系数的计算等等。主要还是对作图和识图能力考查比较多。
三角形勾股定理和关于三角形的证明题,在论证三角形全等、三角形相似等问题时,对应点或者平面向量的线性运算 √对应边容易出错。注意边边角(SSA)不能证两个三角形全等。
圆包括弧、弦、圆周角等,以及相关的公式及其变化,这些都是基本的。圆与圆相切有内切和外切两种状况,相交也存在两圆圆心在公共弦同侧和异侧两种状况,其次圆周角定理是重点,同弧(等弧)所对的圆周角持平,直径所对的圆周角是直角,90度的圆周角所对的弦是直径,一条弧所对的圆周角等于它所对的圆心角的一半。
高三数学竞赛都考什么
1、平面几何
基本要求:掌握初中数学竞赛大纲所确定的所有内容。 补充要求:面积和面积方法。 几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。 几个重要的极值:到三角形三顶点距离之和最小的点--费马点。到三角形三顶点距离的平方和最小的点--重心。三角形内到三边距离之积的点--重心。 几何不等式。 简单的等周问题。了解下述定理: 在周长一定的n边形的中,正n边形的面积。 在周长一定的简单闭曲线的中,圆的面积。 在面积一定的n边形的中,正n边形的周长最小。 在面积一定的简单闭曲线的中,圆的周长最小。 几何中的运动:反射、平移、旋转。 复数方法、向量方法。 平面凸集、凸包及应用。
2、代数
在一试大纲的基础上另外要求的内容: 周期函数与周期,带的函数的图像。 三倍角公式,三角形的一些简单的恒等式,三角不等式。 第二数学归纳法。 递归,一阶、二阶递归,特征方程法。 函数迭代,求n次迭代,简单的函数方程。 n个变元的平均不等式,柯西不等式,排序不等式及应用。 复数的指数形式,欧拉公式,棣莫佛定理,单位根,单位根的应用。 圆排列,有重复的排列与组合,简单的组合恒等式。 一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。 简单的初等数论问题,除初中大纲中所包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类,高斯函数,你智商比我高很多,你也可以的。费马小定理,欧拉函数,孙子定理,格点及其性质。
3多算算会有感觉的。、立体几何
多面角,多面角的性质。三面角、直三面角的基本性质。 正多面体,欧拉定理。 体积证法。 截面,会作截面、表面展开图。
4、平面由以上柱形图可以得出,新课标I卷高考理科数学近五年高频考点为:解析几何
直线的法线式,直线的极坐标方程,直线束及其应用。 二元一次不等式表示的区域。 三角形的面积公式。 圆锥曲线的切线和法线。 圆的幂和根轴。
5、其它
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 836084111@qq.com 举报,一经查实,本站将立刻删除。