1. 首页 > 学习资讯 >

近年高考数学三角函数 历年高考三角函数

高考数学知识点归纳

高考数学知识点总结精华二

高三学生很快就会面临继续学业或事业的选择。面对重要的人生选择,是否考虑清楚了?这对于没有 经验 的学生来说,无疑是个困难的想选择。下面是我整理的高考数学知识点,希望能够帮助大家!

近年高考数学三角函数 历年高考三角函数近年高考数学三角函数 历年高考三角函数


近年高考数学三角函数 历年高考三角函数


高考数学知识点1

主要是考函数和导数,因为这是整个高中阶段中最核心的部分,这部分里还重点考察两个方面:个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析。

二、平面向量和三角函数

对于这部分知识重点考察三个方面:是划减与求值,,重点掌握公式和五组基本公式;第二,掌握三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质;第三,正弦定理和余弦定理来解三角形,这方面难度并不大。

三、数列

数列这个板块,重点考两个方面:一个通项;一个是求和。

四、空间向量和立体几何

在里面重点考察两个方面:一个是证明;一个是计算。

五、概率和统计

概率和统计主要属于数学应用问题的范畴,需要掌握几个方面:……等可能的概率;……;和重复发生的概率。

六、解析几何

七、压轴题

同学们在的备考复习中,还应该把重点放在不等式计算的 方法 中,难度虽然很大,但是也切忌在试卷中留空白,平时多做些压轴题真题,争取能解题就解题,能思考就思考。

高考数学直线方程知识点:什么是直线方程

从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,两直线平行;有无穷多解时,两直线重合;只有一解时,两直线相交于一点。常用直线向上方向与 X 轴正向的 夹角( 叫直线的倾斜角 )或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。可以通过斜率来判断两条直线是否互相平行或互相垂直,也可计算它们的交角。直线与某个坐标轴的交点在该坐标轴上的坐标,称为直线在该坐标轴上的截距。直线在平面上的位置,由它的斜率和一个截距完全确定。在空间,两个平 面相 交时,交线为一条直线。因此,在空间直角坐标系中,用两个表示平面的三元一次方程联立,作为它们相交所得直线的方程。

高考数学知识点2

一、求动点的轨迹方程的基本步骤

⒉写出点M的;

⒊列出方程=0;

⒋化简方程为最简形式;

二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

-直译法:求动点轨迹方程的一般步骤

②设点——设轨迹上的任一点P(x,y);

③列式——列出动点p所满足的关系式;

④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;

⑤证明——证明所求方程即为符合条件的动点轨迹方程。

高考数学知识点3

、高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。

主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是个板块。

第二、平面向量和三角函数。

重点考察三个方面:一个是划减与求值,,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。

第三、数列。

数列这个板块,重点考两个方面:一个通项;一个是求和。

第四、空间向量和立体几何,在里面重点考察两个方面:一个是证明;一个是计算。

第五、概率和统计。

这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,……等可能的概率,第二………,第三是,还有重复发生的概率。

第六、解析几何。

这是我们比较头疼的问题,是整个试卷里难度比较大,计算量的题,当然这一类题,我 总结 下面五类常考的题型,包括:

类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法;

第二类我们所讲的动点问题;

第三类是弦长问题;

第四类是对称问题,这也是2008年高考已经考过的一点;

第五类重点问题,这类题时往往觉得有思路,但是没有,

当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。

第七、押轴题。

考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。

高考数学知识点4

(一)导数定义

设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有增量△x(x0+△x也在该邻域内)时,相应地函数取得增量△y=f(x0+△x)-f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f'(x0),即导数定义

(二)导数第二定义

设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有变化△x(x-x0也在该邻域内)时,相应地函数变化△y=f(x)-f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f'(x0),即导数第二定义

(三)导函数与导数

如果函数y=f(x)在开区间I内每一点都可导,就称函数f(x)在区间I内可导。这时函数y=f(x)对于区间I内的每一个确定的x值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y',f'(x),dy★ 高考数学知识点总结大全/dx,df(x)/dx。导函数简称导数。

(四)单调性及其应用

1.利用导数研究多项式函数单调性的一般步骤

(1)求f¢(x)

(2)确定f¢(x)在(a,b)内符号(3)若f¢(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f¢(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数

2.用导数求多项式函数单调区间的一般步骤

(1)求f¢(x)

(2)f¢(x)>0的解集与定义域的交集的对应区间为增区间;f¢(x)<0的解集与定义域的交集的对应区间为减区间

高考数学知识点5

一、排列

(2)从n个不同元素中取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为Amn.

2排列数的公式与性质

特例:当m=n时,Amn=n!=n(n-1)(n-2)…×3×2×1

规定:0!=1

二、组合

(1)从n个不同元素中取出m个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合

(2)从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号Cmn表示。

2比较与鉴别

由排列与组合的定义知,获得一个排列需要“取出元素”和“对取出元素按一定顺序排成一列”两个过程,而获得一个组合只需要“取出元素”,不管怎样的顺序并成一组这一个步骤。

排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。

三、排列组合与二项式定理知识点

1.计数原理知识点

①乘法原理:N=n1·n2·n3·…nM(分步)②加法原理:N=n1+n2+n3+…+nM(分类)

2.排列(有序)与组合(无序)

Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)!Ann=n!

Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?k!=(k+1)!-k!

3.排列组合混合题的解题原则:先选后排,先分再排

排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素.以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.

捆绑法(元素法,把某些必须在一起的元素视为一个整体考虑)

插空法(解决相间问题)间接法和去杂法等等

在求解排列与组合应用问题时,应注意:

(1)把具体问题转化或归结为排列或组合问题;

(2)通过分析确定运用分类计数原理还是分步计数原理;

(3)分析题目条件,避免“选取”时重复和遗漏;

(4)列出式子计算和作答.

经常运用的数学思想是:

①分类讨论思想;②转化思想;③对称思想.

4.二项式定理知识点:

①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn

特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn

②主要性质和主要结论:对称性Cnm=Cnn-m

二项式系数在中间。(要注意n为奇数还是偶数,是中间一项还是中间两项)

所有二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n

奇数项二项式系数的和=偶数项而是系数的和

Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1

③通项为第r+1项:Tr+1=Cnran-rbr作用:处理与指定项、特定项、常数项、有理项等有关问题。

5.二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。

6.注意二项式系数与项的系数(字母项的系数,指定项的系数等,指运算结果的系数)的区别,在求某几项的系数的和时注意赋值法的应用。

高考数学知识点归纳相关 文章 :

★ 高考数学知识点归纳总结大全

★ 高考数学知识点总结归纳

★ 高考数学知识点整理

★ 高考数学知识点总结整理

★ 高考数学知识点归纳总结

★ 高考数学知识点归纳总结

★ 高考数学知识点归纳总结 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

有谁知道高中数学书上的三角函数是哪6种吗?

1定义

六个三角函数是正弦、余弦、正切、余切、正割、余割。

6种三角函数分别是正弦、余弦、正切、余切、正割、余割。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展3、三角函数的诱导公式到任意实数值,甚至是复数值。

三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。三角函数(也叫做圆函数)是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。

直角三角形三角函数定义

在直角三角形中,当平面上的三点A、B、C的连线,AB、AC、BC,构成一个直角三角形,其中∠ACB为直角。对∠BAC而言,对边(opite)a=BC、斜边(hypotenuse)c=AB、邻边(adjacent)b=AC,

探究高考三角函数的应用和求值

1、公式的记忆与应用;

一、教材依据:

一、高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节

本专题来自于北师大版高中数学教材必修四章的内容,本节课是高三第

二轮复习三角函数中个专题。

二、设计思路:

1、教学指导思想:

2、设计理念:

本节课学生学习的主要方式自主探究、合作交流,通过图示和多媒体教学,激发学生学习的积极性,为了提高学生的知识和技能。让学生动手实践,观察归纳。重视学生数学学习的过程与途径,通过师生互动、生生互动,组间互动提高学生的语言表达能力和数学素养。同时重视培养学生的情感态度与价值观,利用音乐将数学的美彰显出来。

3、 教材分析:

纵观近几年各省的高考数学试题,出现了一些富有时代气息的三角函数与平面向量考题,他们形式独特、背景鲜明、结构新颖,主要考查学生分析问题、解决问题的能力和处理交汇性问题的能力在新课标高考试卷中一般有2~4题,分值约占全卷的14%~20%,因此,加强这些试题的命题动向研究,对指导高考复习无疑又十分重要的意义,新课标高考设计三角函数与平面向量的考题可以说是精彩纷呈,奇花斗艳。三角函数的化简与求值是三角函数中最基础的知识,高考对本部分内容的考察主要以小题的形式出现,即利用三角函数的定义、诱导公式及同角三角函数的关系进行求值、变形,或是利用三角函数的图像及其性质进行求值、求参数的值、求值域、求单调区间及图像判断等,而大题常常在综合性问题中涉及三角函数的定义、图像、诱导公式及同角三角函数的关系的应用等,所以无形中就提升了三角函数的化简与求值的地位。

4、学情分析:

本部分内容对于学生有利因素:

(1)、弧度与角度互化基本掌握;同角三角函数的基本公式记忆较准

(2)、学习态度较为端正、较努力;

(3)、已养成较好的预习、做作业的习惯。

本部分内容对于学生不利因素:

(1)公式记忆运用不熟练;

(2)、运算的速度、准度不佳;

(3)、思维不够灵活。

三、教学目标:

1、知识与能力:理解任意角三角函数的定义;理解同角三角函数的基本关系;

利用单位圆推导出 、 的正弦、余弦、正切的诱导公式;会用向量的

数量积方法推导出两角的余弦公式;推导出正弦、余弦、正切的二倍角公式;

了解它们的内在联系。并能运用上述公式进行简单地恒等变换。在教学过程中,

培养学生动手练习、主动观察、主动思考、自我发现的学习能力,继续提高学生

的运算能力、培养学生运用公式合理归纳、联想、证明、探究问题的能力是关键。

2、方法与途径:了解高考方向,掌握知识的脉络,让学生在课堂中积极思考。

重在掌握化简与求值的基本思路

3、情感与评价:开阔学生的数学视野,崇尚数学的理性思维,使学生体验数学之美。通过教师评价、同伴评价、自己评价使学生学会赏识、学会理解、学会宽容,变得更加自信。

4、现代教学手段的应用:利用多媒体课件更加直观的勾勒出“三角函数的求知与化简”的理论根据,充分的利用“框图”和“超级链接”显得有条不紊,条理清楚,加深学生的记忆;巧妙地利用数学公式编辑器,准确地使用数学语言,使学生眼前一亮,深切感受到数学的美。在学生合作探究的过程,利用多媒体播放悠扬的音乐,在音乐声中学生会更加睿智,更加快乐。

四、教学重点:

2、化简求值的基本技巧与方法

五、教学难点:准确灵活的使用公式

六、教学准备:多媒体课件ppt 、资料《夯世基础短平快特色专项》

七、教学过程:

(一)让学生明确三角函数的化简与求值的考向:以三角求值为重点,同时对三

角式的化简具有较高要求,主要考查:

1、同角三角函数基本关系式与诱导公式的应用.运用诱导公式的“准确”;运

用同角公式的“灵活”:正用、反用、变用。

2、两角和与的三角函数与倍角公式的应用:正用、反用;有关公式的联合运用,主要应用于无附加条件的三角式的化简或求值(以选择题、填空题为主);带有附加条件的三角式的求值问题(以解答题为主);比较简单的三角恒等式的证明(多为解答题)。

3、等价转化思想以及三角变换的基本技能。

(二)概念复习

1、感受知识的产生过程:(以图示的形式呈现,让学生回忆相关的知识)

角→三角函数值定义→基本关系→诱导公式→和角、角→倍角、半角

(要求学生会用向量的数量积来证明两角的余弦公式)

(1)三角函数的符号确定;(2)同角的三角函数的关系;(3)诱导公式

(4)和与的三角函数

注: 的形式(函数 (a,b为常数),可以化为 或,其中可由a,b的值确定.化简时对应哪个公式、怎样定φ)

(三)典例剖析:

高中数学三角函数精练800题的内容提要

<<<

本书根据高中数学教学大纲和各省市高考数学试卷,精选了高中数学近800道三角函数练习题,所编题目题型规范,有一定难度,包括近年各省市高考试卷中不断出现的新题型,具有较强的针对性和实战。全书共分七个单元,每一单元均设置知识点高考数学选择题知识点梳理、重点与难点、基础训练题、提高拓展题等栏目,书末附有全部练习题的参考解题步骤。

高三文科数学三角函数题~!求助!!~急急急!!!

(1)从n个不同元素中取出m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一排列。

∵3acosA=ccosB+bcosC,

在△ABC中,显然有:sinA>0,∴3cosA=1,∴cosA=1/3,∴1-2[sin(A/2)]^2=1/3,

在△ABCnm=n!/(n-m)!m!C中,显然有:sin(A/2)>0,∴sin(A/2)=√3/3。

∵cosB+cosC=2√3/3,∴cosB+cosC=2sin(A/2),

∴cos[(B-C)/2]=1。

在△ABC中,显然有:0°<B<180°、0°<C<180°,∴-180°<B-C<180°,

∴cosA=cos(180°-2C)=-cos2C=-1+2(sinC)^2=1/3,∴2(sinC)^2=4/3,

∴(sinC)^2=2/3。

在△ABC中,显然有:sinC>0,∴sinC=√2/√3。

由cosA=1/3,得:sinA=√[1-(cosA)^2]=√(1-1/9)=2√2/3。

由正弦定理,有:c/sinC=a/sinA,∴c/(√2/√3)=1/(2√2/3),∴c=√3/2。

高中数学三角函数关于诱导公式方面的例题,越多越好,我会加分的

一、高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节

已知方程sinx+co2、复习三角函数化简工具(学生先思考并尝试回答)sx=k在0≤x≤π上有两解,求k的取值范围

【点评】本题是通过函数图象交点个数判断方程实数解的个数,应重视这种方法

数学高考六道大题的题型

数学高考六道大题【解析】原方程sinx+cosx=k sin(x+ )=k,在同一坐标系内作函数y1= sin(x+ )与y2=k的图象.对于y= sin(x+ ),令x=0,得y=1.∴当k∈〔1, 〕时,观察知两曲线在〔0,π〕上有两交点,方程有两解.题型为:三角函数,概率,立体几何,函数,数列,解析几何。三角函数,概率,立体几何相对较容易。函数,数列,解析几何类经常做压轴题,相对较难。

注意归一公式、诱导公式的正确性。转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变,符号看象限)时,很容易因为粗心,导致错误。

二、数列题

1、证明一个数列是等数列时,下结论时要写上以谁为首项,谁为公的等数列。

2、证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。

三、立体几何题

求异面直线所成的角、线面角、二∴结合正弦定理,容易得出:3sinAcosA=sinCcosB+sinBcosC=sin(B+C)=sinA.面角、存在性问题、几何体的高、表面积、体积等问题时,要建系。

四、圆锥曲线问题

注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法。

三角函数在高中数学当中很重要,应该如何学好它?

目∴2cos[(B+C)/2]cos[(B-C)/2]=2sin(A/2),录

多练习,老师上课讲的时候要认真听,记好公式,下课一定要做做题来加深印象,巩固知识。

一定要掌握它的基本性质和图像 ,然后找各种类型的题目练习,找对学习它的方法。高中阶段三角函数主要是有三个,一定要清楚它们的图像是怎么画的,了解它们的对称性、周期性,不会的一定要多问老师 。

一定要将三角函数所有的公式识记的非常牢固,而且尽量做到能够理解,在解三角函数题的时候应该认真思索再下笔。

2020年高考文科数学一轮总复习:三角函数、解三角形高考答题规范

一、三角函数题

2020届秒杀高考数学题型之三角 链接:

(2)公理:在空间中平行于同一条直线的两只直线互相平行。

提取码: im2r 这段内容后打开百度网盘手机App,作更方便哦 若资源有问题,欢迎追问~

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 836084111@qq.com 举报,一经查实,本站将立刻删除。

联系我们

工作日:9:30-18:30,节假日休息