广东省高考数学高一内容占多少
分析:先证明函数f(x)在R上是增函数(注意到f(x2)=f[(x2-x1)+32.你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角.异角化同角,异名化同名,高次化低次)x1]=f(x2-x1)+f(分析:函数模型为:f(x)=loga|x|(a>0)x1));再根据区间求其值域.高考数学必考知识点归纳总结
书本的话,我记得是高二的书吧。不太记得了。高中数学重要知识点归纳
高考数学抽象函数比重 抽象函数在高考中所占比例
高考数学抽象函数比重 抽象函数在高考中所占比例
高考数学抽象函数比重 抽象函数在高考中所占比例
1.必修课程由5个模块组成:
必修1:,函数概念与基本初10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作,判正负)和导数法等函数(指数函数,幂函数,对数函数)
必修2:立体几何初步、平面解析几何初步。
必修3:算法初步、统计、概率。
必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。
以上所有的知识点是所有高中生必须掌握的,而且要懂得运用。
选修课程分为4个系列:
系列1:2个模块
选修1-1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。
选修1-2:统计案例、推理与证明、数系的扩充与复数、框图
系列2: 3个模块
选修2-1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何
选修2-3:计数原理、随机变量及其分布列、统计案例
选修4-4:坐标系与参数方程
选修4-5:不等式选讲
2.高考数学必考重难点及其考点:
重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数
高考相关考点:
1. 与逻辑:的逻辑与运算(一般出现在高考卷的道选择题)、简易逻辑、充要条件
2. 函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数函数、对数函数、函数的应用
3. 数列:数列的有关概念、等数列、等比数列、数列求通项、求和
5. 平面向量:初等运算、坐标运算、数量积及其应用
6. 不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、不等式(经常出现在大题的选做题里)、不等式的应用
7. 直线与圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系
8. 圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用
9. 直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量
10. 排列、组合和概率:排列、组合应用题、二项式定理及其应用
11. 概率与统计:概率、分布列、期望、方、抽样、正态分布
12. 导数:导数的概念、求导、导数的应用
13. 复数:复数的概念与运算
高中数学易错知识点整理
一.与函数
1.进行的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解.
2.在应用条件时,易A忽略是空集的情况
3.你会用补集的思想解决有关问题吗?
5.你知道“否命题”与“命题的否定形式”的区别.39.正弦定理时易忘比值还等于2R.
6.求解与函数有关的问题易忽略定义域优先的原则.
8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域.
9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调.例如:.
12.求函数的值域必须先求函数的定义域。
14.解对数函数问题时,你注意到真数与底数的限制条件了吗?
(真数大于零,底数大于零且不等于1)字母底数还需讨论
15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?
17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?
二.不等式
18.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.
20.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?
21.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.
22.在求不等式的解集、定义域及值域时,其结果一定要用或区间表示;不能用不等式表示.
23.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a<0.
三.数列
24.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?
25.在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。
26.你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在?
27.数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的。)
28.应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先设时成立,再结合一些数学方法用来证明时也成立。
四.三角函数
29.正角、负角、零角、象限角的概念你清楚吗?,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与象限的角;终边相同的角和相等的角的区别吗?
30.三角函数的定义及单位圆内的三角函数线(正弦线、余弦线、正切线)的定义你知道吗?
31.在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?
33.反正弦、反余弦、反正切函数的取值范围分别是
34.你还记得某些特殊角的三角函数值吗?
35.掌握正弦函数、余弦函数及正切函数的图象和性质.你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗?
36.函数的图象的平移,方程的平移以及点的平移公式易混:
(1)函数的图象的平移为“左+右-,上+下-”;如函数的图象左移2个单位且下移3个单位得到的图象的解析式为,即.
(2)方程表示的图形的平移为“左+右-,上-下+”;如直线左移2个个单位且下移3个单位得到的图象的解析式为,即.
(3)点的平移公式:点按向量平移到点,则.
37.在三角函数中求一个角时,注意考虑两方面了吗?(先求出某一个三角函数值,再判定角的范围)
38.形如的周期都是,但的周期为。
五.平面向量
40.数0有区别,的模为数0,它不是没有方向,而是方向不定。可以看成与任意向量平行,但与任意向量都不垂直。
41.数量积与两个实数乘积的区别:
在实数中:若,且ab=0,则b=0,但在向量的数量积中,若,且,不能推出.
在实数中有,但是在向量的数量积中,这是因为左边是与共线的向量,而右边是与共线的向量.
六.解析几何
43.在用点斜式、斜截式求直线的方程时,你是否注意到不存在的情况?
44.用到角公式时,易将直线l1、l2的斜率k1、k2的顺序弄颠倒。
45.直线的倾斜角、到的角、与的夹角的取值范围依次是。
46.定比分点的坐标公式是什么?(起点,中点,分点以及值可要搞清),在利用定比分点解题时,你注意到了吗?
47.对不重合的两条直线
(建议在解题时,讨论后利用斜率和截距)
48.直线在两坐标轴上的截距相等,直线方程可以理解为,但不要忘记当时,直线在两坐标轴上的截距都是0,亦为截距相等。
49.解决线性规划问题的基本步骤是什么?请你注意解题格式和完整的文字表达.(①设出变量,写出目标函数②写出线性约束条件③画出可行域④作出目标函数对应的系列平行线,找到并求出解⑦应用题一定要有答。)
50.三种圆锥曲线的定义、图形、标准方程、几何性质,椭圆与双曲线中的两个特征三角形你掌握了吗?
51.圆、和椭圆的参数方程是怎样的?常用参数方程的方法解决哪一些问题?
52.利用圆锥曲线第二定义解题时,你是否注意到定义中的定比前后项的顺序?如何利用第二定义推出圆锥曲线的焦半径公式?如何应用焦半径公式?
53.通径是抛物线的所有焦点弦中最短的弦.(想一想在双曲线中的结论?)
54.在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?椭圆,双曲线二次项系数为零时直线与其只有一个交点,判别式的限制.(求交点,弦长,中点,斜率,对称,存在性问题都在下进行).
55.解析几何问题的求解中,平面几何知识利用了吗?题目中是否已经有坐标系了,是否需要建立直角坐标系?
七.立体几何
56.你掌握了空间图形在平面上的直观画法吗?(斜二测画法)。
57.线面平行和面面平行的定义、判定和性质定理你掌握了吗?线线平行、线面平行、面面平行这三者之间的联系和转化在解决立几问题中的应用是怎样的?每种平行之间转换的条件是什么?
58.三垂线定理及其逆定理你记住了吗?你知道三垂线定理的关键是什么吗?(一面、四线、三垂直、立柱即面的垂线是关键)一面四直线,立柱是关键,垂直三处见
59.线面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面平行的判定定理易把条件错误地记为”一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行”而导致证明过程跨步太大.
60.求两条异面直线所成的角、直线与平面所成的角和二面角时,如果所求的角为90°,那么就不要忘了还有一种求角的方法即用证明它们垂直的方法.
62.你知道公式:和中每一字母的意思吗?能够熟练地应用它们解题吗?
63.两条异面直线所成的角的范围:0°<α≤90°
直线与平面所成的角的范围:0o≤α≤90°
二面角的平面角的取值范围:0°≤α≤180°
64.你知道异面直线上两点间的距离公式如何运用吗?
65.平面图形的翻折,立体图形的展开等一类问题,要注意翻折,展开前后有关几何元素的“不变量”与“不变性”。
66.立几问题的求解分为“作”,“证”,“算”三个环节,你是否只注重了“作”,“算”,而忽视了“证”这一重要环节?
67.棱柱及其性质、平行六面体与长方体及其性质.这些知识你掌握了吗?(注意运用向量的方法解题)
68.球及其性质;经纬度定义易混.经度为二面角,纬度为线面角、球面距离的求法;球的表面积和体积公式.这些知识你掌握了吗?
八.排列、组合和概率
69.解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合.
解排列组合问题的规律是:相邻问题捆绑法;不邻问题插空法;多排问题单排法;定位问题优先法;定序问题倍缩法;多元问题分类法;有序分配问题法;选取问题先排后排法;至多至少问题间接法.
70.二项式系数与展开式某一项的系数易混,第r+1项的二项式系数为。二项式系数项与展开式中系数项易混.二项式系数项为中间一项或两项;展开式中系数项的求法要用解不等式组来确定r.
71.你掌握了三种常见的概率公式吗?(①等可能的概率公式;②互斥有一个发生的概率公式;③相互同时发生的概率公式.)
72.二项式展开式的通项公式、n次重复试验中A发生k次的概率易记混。
通项公式:它是第r+1项而不是第r项;
A发生k次的概率:.其中k=0,1,2,3,…,n,且0
73.求分布列的解答题你能把步骤写全吗?
74.如何对总体分布进行估计?(用样本估计总体,是研究统计问题的一个基本思想方法,一般地,样本容量越大,这种估计就越,要求能画出频率分布表和频率分布直方图;理解频率分布直方图矩形面积的几何意义.)
75.你还记得一般正态总体如何化为标准正态总体吗?(对任一正态总体来说,取值小于x的概率,其中表示标准正态总体取值小于的概率)
以上都是高考数学必考知识点高中数学重点知识归纳具体内容,同学可以按照以上知识点和重点知识归纳去学习。
高中数学的四大思想是什么?请给高考例题
不用着急,这部分掌握一些常规题就没什么问题,难题和偏题做了没意思,高考用不上`必修5:解三角形、数列、不等式。``常规题能有把握有速度做出来也还是要多多努力才行啊!数形结合思想 数形结合思想在高考中占有非常重要的地位,其“数”与“形”结合,相互渗透,把代数式的刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合. 应用数形结合思想,就是充分考查数学问题的条件和结论之间的内在联系,既分析其代数意义又揭示其几何意义,将数量关系和空间形式巧妙结合,来寻找解题思路,使问题得到解决. 运用这一数学思想,要熟练掌握一 些概念和运算的几何意义及常见曲线的代数特征. 应用数形结合的思想,应注意以下数与形的转化:(1)的运算及韦恩图;(2)函数及其图象;(3)数 列通项及求和公式的函数特征及函数图象;(4)方程(多指二元方程)及方程的曲线. 以形助数常用的有:借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方法. 以数助形常用的有:借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合. 分类讨论思想 分类讨论思想就是根据所研究对象的性质异,分各种不同的情况予以分析解决. 分类讨论题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论”. 常见的分类情形有:按数分类;按字母的取值范围分类;按的可能情况分类;按图形的位置特征分类 等. 分类讨论思想方法可以渗透到高中数学的各个章节,它依据一定的标准,对问题分类、求解,要特别注意 分类必须满足互斥、无漏、最简的原则. 函数与方程思想 函数与方程思想是最重要的一种数学思想,高考中所占比重较大,综合知识多、题型多、应 用技巧多. 函数思想简单,即将所研究的问题借助建立函数关系式亦或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决. 运用函数与方程的思想时,要注意函数,方程与不等式之间的相互联系和转化,应做到: (1)深刻理解函数 f(x)的性质(单调性、奇偶性、周期性、最值和图象变换),熟练掌握基本初等函数的性质,这是应用函数思想解题的基础. (2)密切注意三个“二次”的相关问题,三个“二次”即一元二次函数、一元二次方程、一元二次不等 式是中学数学的重要内容,具有丰富的内涵和密切的联系. 掌握二次函数基本性质,二次方程实根分布条件,二次不等式的转化策略. 转化与化归思想 化归与转化的思想,就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图象、公式或已知条件将,问题通过变换加以转化,进而达到解决问题的思想. 转化是将数学命题由一种形式向另一种形式的变换过程,化归是把待解决的问题通过某种转化过程归结为一类已经解决或比较容易解决的问题. 转 化与化归思想是中学数学最基本的思想方法,堪称数学思想的精髓,它渗透到了数学教学内容的各个领域和解 题过程的各个环节中. 转化有等价转化与不等价转化. 等价转化后的新问题与原问题实质是一样的. 不等价转 化则部分地改变了原对象的实质,需对所得结论进行必要的修正.
所以x-m的范围是:(a-m,b-m)如何理解抽象函数
13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?解读抽象函数
⑴ 对于f(x)而言(x)的范围=f(x)的定义11.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用或不等式表示.域
⑵ f:表示同一种运算方式:f(x)相当于f[g(x进而由x1<x2,有 =f(x1-x2)>1.)],(x)与[g(x)]的范围相同
⑶ 对于f(x+1)而言,(x+1)的范围不等于f(x+1)的定义域
⑷ 对于f(x)与f(x+1):其中(x)与(x+1)的范围相等,{对于两个运算法则相同的函数,其( )中代数式的范围相同}
1. 已知函数f(x)的定义域,求f[g(x)]的定义域:
若f(x)定义域为:a 则f[g(x)]的[g(x)]的范围是:a 将①式进行求解,所得x的范围即为f[g(x)]的定义域 2. 已知函数f[g(x)]的定义域,求f(x)的定义域: 若g(x)=x-m且f(x-m)的定义域为(a,b) 又因为:⑴ 就是教函数那章的时候。不过书上也只是提了一下。你可以问老师。。 高中没要求这个呀。你学抽象函数做什么。。。汗 1 一楼的确实有点占地方,答非所问`偶也汗一下先``` 各地的卷子有所不同,湖南卷数列部分是选择题一道或者两道(5到10分),填空题一道(4分),综合题有时有一道(14分有时候不会出现),多数情况下会综合其他的内容,在选择填空比较简单。出现在综合题里面一般比较难。约占15%的份额。 楼上这位这麽长。。汗一下先。。不过毕竟是学长额。。我今年高三。。。 俺们数学老师是教研组长。。数列嘛也就一两道。。而且不会出现在有难度的题中。。熟悉数列的基本知识就行。。。 名师传授语数外“备考宝典”:数学篇 主讲:王绍锋老师 对于2007年安徽省高考数学自主命题趋势预测,我认为命题的指导思想与命题原则不会变,仍然会坚持“立足于平稳过渡,局部创新”的命题原则。“平61.异面直线所成角利用“平移法”求解时,一定要注意平移后所得角等于所求角(或其补角),特别是题目告诉异面直线所成角,应用时一定要从题意出发,是用锐角还是其补角,还是两种情况都有可能。稳过渡”主要表现在试卷结构、题型题量上、各部分内容及新增内容的分值比例上以及难易程度上。“在稳定中创新”主要表现在:加大对基础知识的考查、注重回归教材、体现以学生为本的人文精神与新课程理念;推出创新性题目,考查学生的潜能的发展力等。 综观2006年各地高考试题不难发现,支撑整个高中数学的主体知识是函数与导数,三角与向量,数列与不等式,解几与立几,概率与统计等。在每年高考中这些主干知识都保持着较高的考查比例,而且是常考常新。 1、与简易逻辑。的考查重点是抽象思维能力,主要考查与的关系,将加强对的计算与化简的考查,并有可能从有限向无限发展。简易逻辑多为考查“充分与必要条件”及命题真伪的判别。 2、函数与导数。从2006年安徽省自主命题的内容看,函数的单调性和奇偶性有向抽象函数发展的趋势。函数的图像应注意平移、伸缩变换与对称变换的利用,注意函数的对称性与函数值的变化趋势。要重视函数的最值与反函数的新题型。函数与导数的结合是高考的热点题型。 3、不等式。历年各地高考卷多次考查不等式,2005年安徽使用的全国卷i的理科压轴题的不等式证明题难倒了不少考生,但2006年安徽卷未见单独的不等式试题,如此反也提醒我们不能随意押题,要按考纲要求进行系统复习。选择题和填空题主要考查不等式性质、解法及均值不等式;解答题一般都是在与其他知识的交汇中考查含参量不等式的解法或与数列、函数综合的不等式证明。 4、向量。2006年不少省、市有关于向量的匠心独运的试题,而我省的高考卷中第6题和第14题两个基本题。加大对向量的考查力度,应该是今后高考命题的发展趋势。向量和平面几何的结合是高考选择、填空题的命题亮点,向量不再停留在问题的直接表达水平上,而与解几、函数、三角等知识有机结合将成为一种趋势,会逐渐增加其综合程度。 5、三角。2006年安徽卷三角函数约占27分,属考查的主干内容之一。三角函数突出三角函数的图像与性质的考查,三角变换的难度有所降低,同时,以三角形为载体,以三角函数为核心,以正余弦公式为主体,考查三角变换及其应用的能力,已成为考试热点。 6、数列与极限。等、等比数列的概念、性质、通项公式等都是经常考查的重点,需要灵活掌握和应用。数列是特殊的函数,而不等式是深刻认识函数与数列的工具,三者综合的求解题与求证题是近年来高考命题的新热点。递推数列的考查也有加大的趋势,试题往往以比较抽象的数列入手,给出数列一些性质,要求考生进行严格的逻辑论证。 7、立体几何。空间线面的位置关系和数量关系,诸如空间线面平行、垂直的判定与证明,线面之间角与距离的计算,尤其是以多面体和球体为载体的线面位置关系的论证与计算,仍然是考查的重点。立体几何试题往往有传统解法和向量8、解析几何。解析几何的重点仍然是圆锥曲线的性质,包括:直线的倾斜角、斜率、距离、平行垂直、点对称、直线对称、线性规划有关问题等等。直线和圆锥曲线的位置关系以及轨迹问题,仍然以考查方程思想及用韦达定理处理弦长中点为重点。坐标法使平面向量与平面解析几何自然地联系并有机结合起来。涉及圆锥曲线参数的取值范围问题也是命题亮点。解法两种,高考命题时一般偏向于向量解法,2006年的各地高考的立体几何试题几乎均能用向量解决。 9、概率统计。排列组合与概率统计是近代数学的重要分支,是数学应用考查的主流题型,且对随机变量考查的深度与难度有明显加强的态势,分值超过其所占课时的比重。这部分考查内容包括:二项式定理的运用;排列与组合;概率与统计。在选择题填空题中,抽样的方法是重点,在解答题中,排列、组合与概率是重点。 如果你真正理解什么是定义域什么是值域,就很好解了,这种题f对应关系始终不变,定义域始终是X范围,不管()里是什么。又因为f不变所以对于他施加关系的()整体范围不变,按照这个解好了。建议把书上的定义域和值域的其实抽象函数的知识和生活实际以及自然科学科学密切相关,这类知识构成数学中有关函数方程的知识,包括了初等数学中的求函数解析式,解微分方程、偏微分方程、积分函数、变分法等有关知识,可以说是数学研究中庞大的一部分知识,因为这一部分知识十分重要,所以在中学数学教学中做了初步的渗透,在高考中也多次出到这方面的题目。在数学竞赛和各种教辅书中就有,各省的中学数学教研刊物中也有。记得1964年的《数学通报》上就登有介绍“函数方程”的文章,以后90年代《数学通讯》上介绍解题时可以利用已知的函数方程的解做“样板函数”,解题时作为指导,读了后很受启发,对解题有一定帮助。定义再好好看看,理解了就很好解了。 抽象函数是指没有明确给出具体的函数表达式,只是给出一些特殊条件的函数,它是中学数学函数部分的难点.因为抽象,学生难以理解,接受困难;因为抽象,教师对教材难以处理,何时讲授,如何讲授,讲授哪些内容,采用什么方式等等,深感茫然无序.其实,大量的抽象函数都是以中学阶段所学的基本函数为背景抽象而得,解题时,若能从研究抽象函数的“背景”入手,根据题设中抽象函数的性质,通过类比、猜想出它可能为某种基本函数,常可觅得解题思路,本文就上述问题作一些探讨. 1. 正比例函数型的抽象函数 例1已知函数f(x)对任意实数x、y均有f(x+y)=f(x)+f(y),且当x>0时,f(x)>0,f(-1)= -2求f(x)在区间[-2,1]上的值域. 例2已知函数f(x)对任意实数x、y均有f(x+y)+2=f(x)+f(y),且当x>0时,f(x)>2,f(3)= 5,求不等式 f(a2-2a-2)<3的解. 分析:先证明函数f(x)在R上是增函数(仿例1);再求出f(1)=3;脱去函数符号. 2. 幂函数型的抽象函4. 三角函数:有关概念、同角关系与诱导公式、和倍半公式、求值、化简、证明、三角函数的图像及其性质、应用数 例3已知函数f(x)对任意实数x、y都有f(xy)=f(x)f(y),且f(-1)=1,f(27)=9,当0≤x<1时,f(x)∈[0,1]. (1) 判断f(x)的奇偶性; (2) 判断f(x)在[0,+∞]上的单调性,并给出证明; (3) 若a≥0且f(a+1)≤ ,求a的取值范围. 分析:(1)令y=-1; (2)利用f(x1)=选修4-1:几何证明选讲f( ·x2)=f( )f(x2); (3)0≤a≤2. 3. 指数函数型的抽象函数 例4设函数f(x)的定义域是(-∞,+∞),满足条件:存在x1≠x2,使得f(x1)≠f(x2);对任何x和y,f(x+y)=f(x)f(y)成立.求: (1) f(0); (2) 对任意值x,判断f(x)值的符号. 分析:(1)令y=0;(2)令y=x≠0. 例5是否存在函数f(x),使下列三个条件:①f(x)>0,x∈N;②f(a+b)= f(a)f(b),a、b∈N;③f(2)=4.同时成立?若存在,求出f(x)的解析式,若不存在,说明理由. 分析:先猜出f(x)=2x;再用数学归纳法证明 4. 对数函数型的抽象函数 例6设f(x)是定义在(0,+∞)上的单调增函数,满足f(x·y)=f(x)+f(y),f(3)=1,求: (1) f(1); (2) 若f(x)+f(x-8)≤2,求x的取值范围. 分析:(1)利用3=1×3; (2)利用函数的单调性和已知关系式. 例7设函数y= f(x)的反函数是y=g(x).如果f(ab)=f(a)+f(b),那么g(a+b)=g(a)·g(b)是否正确,试说明理由. 进而m+n=f(a)+f(b)= f(ab)=f [g(m)g(n)]…. 5. 三角函数型的抽象函数 例8已知函数f(x)的定义域关于原点对称,且满足以下三个条件: ① x1、x2是定义域中的数时,有f(x1-x2)= ; ③ 当0<x<2a时,f(x)<0. 试问: (2) 在(0,4a)上,f(x)的单调性如何?说明理由. 分析:(1)利用f [-(x1-x2)]= -f [(x1-x2)],判定f(x)是奇函数; (3) 先证明f(x)在(0,2a)上是增函数,再证明其在(2a,4a)上也是增函数. 对于抽象函数的解答题,虽然不可用特殊模型代替求解,但可用特殊模型理解题意.有些抽象函数问题,对应的特殊模型不是我们熟悉的基本初等函数.因此,针对不同的函数要进行适当变通,去寻求特殊模型,从而更好地解决抽象函数问题. 例9已知函数f(x)(x≠0)满足f(xy)=f(x)+f(y), (1) 求证:f(1)=f(-1)=0; (2) 求证:f(x)为偶函数; (3) 若f(x)高考数学占比为:基础题占的比例是70%,20%是中等的,10%是难的。试卷内容及分配比例:、简易逻辑10分、数列19分、三角函数19分、立体几何18分、圆锥曲线18分、概率与统计18分、导数18分、算法5分、线性规划5分、不等式5分、向量5分、复数5分、三视图5分。在(0,+∞)上是增函数,解不等式f(x)+f(x- )≤0. (1) 先令x=y=1,再令x=y= -1; (2) 令y= -1; (3) 由f(x)为偶函数,则f(x)=f(|x|). 例10已知函数f(x)对一切实数x、y满足f(0)≠0,f(x+y)=f(x)·f(y),且当x<0时,f(x)>1,求证: (1) 当x>0时,0<f(x)<1; (2) f(x)在x∈R上是减函数. 分析:(1)先令x=y=0得f(0)=1,再令y=-x; (3) 受指数函数单调性的启发: 由f(x+y)=f(x)f(y)可得f(x-y)= , 总之,因为抽象函数与函数的单调性、奇偶性等众多性质联系紧密,加上本身的抽象性、多变性,所以问题类型众多,解题方法复杂多变.尽管如此,以特殊模型代替抽象函数帮助解题或理解题意,是一种行之有效的教学方法,它能解决中学数学中大多数抽象函数问题.这样做符合学生的年龄特征和认知水平,学生不仅便于理解和接受,感到实在可靠,而且能使学生展开丰富的想象,以解决另外的抽象函数问题. 抽象函数 一般形式为 y=f(x)且无法用数字和字母表示出来的函数,一般出现在题目中,或许有定义域、值域等。 1抽象函数常常与周期函数结合,如: f(x)=-f(x+2) f(x)=f(x+4) 2解抽象函数题,通常要用赋值法,而且高考数学中,常常要先求F(0) F(1) 抽象函数的经典题目!!! 我们把没有给出具体解析式的函数称为抽象函数。由于这类问题可以全面考查学生对函数概念和性质的理解,同时抽象函数问题4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?又将函数的定义域,值域,单调性,奇偶性,周期性和图象集于一身,所以在高考中不断出现;如2002年上海高考卷12题,2004年江苏高考卷22题,2004年浙江高考卷12题等。学生在解决这类问题时,往往会感到无从下手,正确率低,本文就这类问题的解法谈一点粗浅的看法。 一.特殊值法:在处理选择题时有意想不到的效果。 例1 定义在R上的函数f(x)满足f (x + y) = f (x) + f ( y )(x,y∈R),当x<0时,, f (x)>0,则函数f (x)在[a,b]上 ( ) A 有最小值f (a) B有值f (b) C有最小值f (b) D有值f ( ) 分析:许多抽象函数是由特殊函数抽分析:设f(a)=m,f(b)=n,则g(m)=a,g(n)=b,象背景而得到的,如正比例函数f (x)= kx(k≠0), , , ,可抽象为f (x + y) = f (x) +f (y),与此类似的还有 特殊函数 抽象函数 f (x)= x f (xy) =f (x) f (y) f (x)= f (x+y)= f (x) f (y) f (x)= f (xy) = f (x)+f (y) f (x)= tanx f(x+y)= 此题作为选择题可采用特殊值函数f (x)= kx(k≠0) ∵当x <0时f (x) > 0即kx > 0。.∴k < 0,可得f (x)在[a,b]上单调递减,从而在[a,b]上有最小值f(b)。 二.赋值法.根据所要证明的或求解的问题使自变量取某些特殊值,从而来解决问题。 例2 除了用刚才的方法外,也可采用赋值法 解:令y = -x,则由f (x + y) = f (x) + f (y) (x,y∈R)得f (0) = f (x) +f (-x)…..①, 再令x = y = 0得f(0)= f(0)+ f(0)得f (0)=0,代入①式得f (-x)= -f(x)。 得f (x)是一个奇函数,再令 ,且。 ∵x <0,f (x) >0,而∴ ,则得 , 即f (x)在R上是一个减函数,可得f (x)42.是向量与平行的充分而不必要条件,是向量和向量夹角为钝角的必要而不充分条件。在[a,b]上有最小值f(b)。 例3 已知函数y = f (x)(x∈R,x≠0)对任意的非零实数 , ,恒有f( )=f( )+f( ), 试判断f(x)的奇偶性。 解:令 = -1, =x,得f (-x)= f (-1)+ f (x) ……①为了求f (-1)的值,令 =1, =-1,则f(-1)=f(1)+f(-1),即f(1)=0,再令 = =-1得f(1)=f(-1)+f(-1)=2f(-1) ∴f(-1)=0代入①式得 f(-x)=f(x),可得f(x)是一个偶函数。 三.利用函数的图象性质来解题: 抽象函数虽然没有给出具体的解析式,但可利用它的性质图象直接来解题。 抽象函数解题时常要用到以下结论: 定理1:如果函数y=f(x)满足f(a+x)=f(b-x),则函数y=f(x)的图象关于x= 对称。 定理2:如果函数y=f(x)满足f(a+x)=f(b+x),则函数y=f(x)是一个周期函数,周期为a-b。 例4 f(x)是定义在R上的偶函数,且f(x)=f(2-x),证明f(x)是周期函数。 分析:由 f(x)=f(2-x),得 f(x)的图象关于x=1对称,又f(x)是定义在R上的偶函数,图象关于y轴对称,根据上述条件,可先画出符合条件的一个图,那么就可以化无形为有形,化抽象为具体。从图上直观地判断,然后再作证明。 由图可直观得T=2,要证其为周期函数,只需证f (x) = f (2 + x)。 证明:f (x) = f (-x) = f [2-(-x)] = f (2 + x),∴ T=2。 ∴f (x)是一个周期函数。 例5 已知定义在[-2,2]上的偶函数,f (x)在区间[0,2]上单调递减,若f (1-m) 版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 836084111@qq.com 举报,一经查实,本站将立刻删除。高中数学抽象函数知识
选修2-2:导数及其应用、推理与证明、数系的扩充与复数16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。高中数学数列部分在高考数学中占多重呀·急
已知实数,且,则a=c,但在向量的数量② f(a)= -1(a>0,a是定义域中的一个数);积中没有.名师指导2007年高考数学备考宝典
(1) f(x)的奇偶性如何?说明理由;求数学学霸!啊啊啊啊 高一数学 抽象函数!这个东西我老搞不懂!比如这道题!真是颠毁了我
难点:函数,圆锥曲线我是高一的学生,现求数学解题方法(抽象函数)。
关于抽象函数的例题